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Abstract

Trimming principles play an important role in robust statistics. However, their
use for clustering typically requires some preliminary information about the con-
tamination rate and the number of groups. We suggest a fresh approach to trim-
ming that does not rely on this knowledge and that proves to beparticularly suited
for solving problems in robust cluster analysis. Our approach replaces the original
K-population (robust) estimation problem withK distinct one-population steps,
which take advantage of the good breakdown properties of trimmed estimators
when the trimming level exceeds the usual bound of 0.5. In this setting we prove
that exact affine equivariance is lost on one hand, but on the other hand an arbi-
trarily high breakdown point can be achieved by “anchoring”the robust estimator.
We also support the use of adaptive trimming schemes, in order to infer the con-
tamination rate from the data. A further bonus of our methodology is its ability to
provide a reliable choice of the usually unknown number of groups.
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1 Introduction

Trimming principles play an important role in robust statistics and allow to solve com-
plex problems in the analysis of contaminated multivariatedata (see, e.g., Clarke and
Schubert, 2006; Cuesta-Albertos et al., 2008; Garcı́a-Escudero et al., 2008; Ritter,
2014; Farcomeni and Greco, 2015). LetX = {x1, . . . , xn} be a random sample
of v-variate observations from a population with distributionfunctionG(x). We as-
sume thatG(x) is an unknown element within a familyG of distribution functions
such that

G = {G(x) : G(x) = (1 − ǫ)G0(x) + ǫG1(x); x ∈ R
v; ǫ ∈ [0, 1)}, (1)

whereG0(x) is the distribution function of the “good” part of the data, i.e. G0(x)
represents the postulated null model,G1(x) is the contaminant distribution belonging
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to a classC of distributions andǫ is the contamination rate. Although it is not necessary
to defineC as a specific parametric family, some regularity conditionson it are often
assumed (see, e.g., Cuesta-Albertos et al., 2008; Cerioli et al., 2013).

In the one-population version of model (1) it is common to take

G0(x) = Φµ,Σ(x), (2)

whereΦµ,Σ(x) is the distribution function of av-variate normal random variable with
meanµ and dispersionΣ. The trimmed estimators ofµ andΣ take the form

µ̃α =
1

Wα

n
∑

i=1

wi,αxi, (3)

Σ̃α =
ζα
Wα

n
∑

i=1

wi,α(xi − µ̃α)(xi − µ̃α)
′, (4)

whereα ∈ (0, 0.5), eitherwi,α = 0 orwi,α = 1, Wα =
∑n

i=1 wi,α, and

ζα =
1− α

Gχ2
v+2

(χ2
v,1−α)

(5)

is a scaling factor ensuring consistency ofΣ̃α whenǫ = 0. In (5), we defineGχ2
v
(·) to

be the distribution function of aχ2
v random variable, while

χ2
v,1−α = G−1

χ2
v

(1− α) (6)

is its (1 − α)-th quantile. Computation of the binary weightswi,α, i = 1, . . . , n,
is sketched in§2.1 and§2.2 for two alternative trimmed estimators. In all cases, the
weightswi,α are defined in such a way thatWα = ⌊(1 − α)n⌋, where⌊·⌋ denotes
the floor function. The numberα thus gives the trimming level, i.e. the proportion of
observations discarded by the robust procedure. The squared distances

d2i,α = (xi − µ̃α)
′Σ̃−1

α (xi − µ̃α) i = 1, . . . , n (7)

are used for outlier identification and, more generally, forrobustly ordering multivariate
data (Atkinson et al., 2004; Hubert et al., 2008; Riani et al., 2009; Cerioli, 2010).

In the standard approach to trimmingα must be fixed in advance, thus requiring
some a priori information on the degree of contamination in model (1). Otherwise, the
usual suggestion is to chooseα = ǫ∗ − 1/n, where

ǫ∗ = ⌊(n− v + 1)/2⌋/n ≈ 0.5 (8)

is the maximal value of the (replacement) breakdown point ofµ̃α and Σ̃α (Davies,
1987; Lopuhaä and Rousseeuw, 1991). Under model (1), this choice corresponds to
the assumption that at least50% plus another⌈(v − 1)/2⌉ observations, where⌈·⌉ is
the ceiling function, come fromG0(x), i.e. that

ǫ <
1

2
. (9)
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Condition (9) is very natural in one-population models forG0(x), like (2) (see, e.g.,
Rousseeuw and Leroy, 1987, p. 14). However, choosingα = ǫ∗ − 1/n makes com-
putation of the trimmed estimators̃µα and Σ̃α virtually useless when there is more
than one “good” population and the goal is to robustly cluster the observations inX
according to these populations. In a multi-population structure forG0(x), we typically
assume that the “good” data come from

G0(x) =

K
∑

k=1

πkΦµk,Σk
(x), πk > 0,

K
∑

k=1

πk = 1, (10)

whereK is the unknown number of populations,µk andΣk are population-specific
parameters, andπ1, . . . , πK are the unknown mixing proportions. It is then possible to
identify the largest population inG0(x) through estimates (3) and (4), and the associ-
ated robust distances (7), only in the unlikely situation wheremaxk πk ≫ 0.5. Indeed,
a simple example where trimming methods fail to detect a multi-population structure
even ifmaxk πk ≈ 0.6 is provided by Atkinson et al. (2004, pp. 372–373). A related
qualitative comment is made by Huber and Ronchetti (2009, p.21).

The goal of this work is to suggest a fresh approach to trimming that allows com-
putation of the trimmed estimators̃µα and Σ̃α also whenG0(x) follows (10) with
maxk πk ≤ 0.5. Our methodology is particularly suited for solving problems in robust
cluster analysis, whose aim is to identify individual membership to the populations
that originate mixture (10). This is achieved by replacing aK-population (robust) es-
timation step, at the heart of the available model-based clustering algorithms, withK
distinct one-population steps, which take advantage of (3)and (4). Specifically, our
proposal consists in computing the trimmed estimatorsµ̃α andΣ̃α with α ≥ 0.5, and
possibly much larger than the usual bound(ǫ∗ − 1/n). We name our methodwild
trimming, since we suggest to trim much more than it is customary following (8). In-
deed, our trimming level can be as large as the highest value of α for which Σ̃α is
positive definite. We also strongly support the use of adaptive procedures (in the sense
described by Huber and Ronchetti, 2009, p. 8), where the trimming level is not fixed in
advance, but different values ofα are used and the best one is selected from the data,
thus yielding a closer agreement betweenα in (3) and (4), andǫ in (1). Therefore,
the output of our methodology is a robust procedure where notall units inX are clas-
sified into groups, since we discard the observations that are believed to come from the
contaminant distributionG1(x), and where neither the number of groupsK nor the
trimming levelα are specified a priori.

In spite of its simplicity, we believe that the idea behind wild trimming has not
gained the popularity that it deserves. One motivation liesin the often implicit assump-
tion that the “good” population should correspond to the majority of data. Instead, our
point of view is different and we define outlyingness of a multivariate observation with
respect to a specific point, sayx0, ideally sampled fromG0(x). In our framework also
the bulk of the data can become anomalous if sufficiently far fromx0. Wild trimming
thus provides a very natural approach, since condition (9) is not required. Although
the robustness properties of the estimators obtained withα ≥ 0.5 turn out to be far
from trivial, they are intuitively appealing and obviouslydo not contradict the well
known findings for the caseα < 0.5, such as the fundamental bound (8). One excep-
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tion towards the application of wild trimming ideas is provided by the Forward Search,
which has shown good potential for performing robust cluster analysis (Atkinson et al.,
2004, 2017), but mainly in an exploratory context. Our work thus puts robust cluster-
ing through the Forward Search within a statistically principled framework where the
robustness properties of the algorithm are made explicit. However, our goal is more
ambitious and through our methodology we aim at performing robust estimation and
cluster analysis under the same umbrella, with data-drivenselection of bothK andα.
This task is clearly not possible in the standard approach totrimming, whereα < 0.5,
and is also problematic through the available robust clustering techniques, which re-
quire some a priori information about the features of models(1) and (10).

The paper is structured as follows. In§2 we introduce the two multivariate trimmed
estimators that we use in our work. In§3 we obtain the robustness properties of these
estimators under wild trimming and we define a new class of estimators having the
required breakdown properties. The suggested robust divisive clustering method is
detailed in§4. We show the practical advantages of our proposal in§5, where we also
provide comparisons. Some concluding remarks are given in§6. Further examples are
provided in the Supplementary Material.

2 Multivariate (adaptive) trimming

2.1 The Minimum Covariance Determinant

For trimming levelα, the Minimum Covariance Determinant (MCD) subset ofX is
defined as the subsample ofhα = ⌊(1 − α)n⌋ observations whose covariance matrix
has the smallest determinant. Letι♭α = {i1, . . . , ihα

} denote the set of the indices of
the observations belonging to this subset. The MCD estimators ofµ andΣ (Rousseeuw
and Leroy, 1987, p. 262–265) are then defined by (3) and (4), with weights

wi,α = 1 if i ∈ ι♭α (11)

= 0 otherwise,

andWα = hα. The MCD estimators are consistent under very general conditions on
G(x) (Butler et al., 1993; Cator and Lopuhaä, 2012). They also attain the breakdown
bound (8) whenα = ǫ∗ − 1/n. To increase efficiency, while keeping a high break-
down point, a one-step reweighting scheme is often used. Reweighted estimators are
computed by giving weight 0 to observations for which the squared robust distance (7)
exceeds a threshold value, defined in terms of a new trimming levelα∗ ∈ (0, α) and
such thatα∗ ≪ α. The reweighted MCD (RMCD) estimates are then obtained through
(3) and (4), but now with weights

wi,α∗ = 1 if d2i,α ≤ d2α∗ (12)

= 0 otherwise,

and scaling factorζα∗ = (1 − α∗)/{Gχ2
v+2

(χ2
v,1−α∗)}. A popular choice in (12) is

α∗ = 0.025, so thatd2α∗ is the (1 − α∗) = 0.975-th quantile of the distribution of
the squared robust distances (7). When the asymptotic distribution of such distances is
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consideredd2α∗ = χ2
v,0.975, but more accurate approximations exist (Hardin and Rocke,

2005; Cerioli, 2010). The RMCD estimates can thus be seen as the result of a two-step
adaptive trimming procedure, computed using two differentsubsets ofX . Each of
these subsets is defined by a specific trimming level:α in the initial step andα∗ in
the reweighting stage. An advantage is that the number of units declared to be outliers
by distances (7), and thus discarded in the second subset, can provide information on
the contamination rateǫ in model (1). A fully adaptive procedure based on the MCD
should extend the reweighting scheme to a decreasing sequence of trimming levels,
starting fromα, and monitor the resulting changes in the parameter estimates (see
Riani et al., 2014; Cerioli et al., 2017). A similar approachis exploited in the Forward
Search.

2.2 The Forward Search

The Forward Search (FS) is a flexible general method for detecting anomalies in struc-
tured data (Atkinson et al., 2004). Given a sample ofn observations and a generating
model for them, the method starts from a subset of cardinality m0 ≪ n, which is ro-
bustly chosen to contain observations coming from the postulated model. This subset
is used for fitting the model and suitable deviance measures are computed. The subse-
quent fitting subset is then obtained by taking them0+1 observations with the smallest
deviance measures. The algorithm iterates this fitting and updating scheme until all the
observations are used in the fitting subset, thus yielding the classical statistical sum-
mary of the data. Therefore, the FS applies a decreasing sequence of trimming levels
α0 > α1 > . . . > αL > 0, with

α0 = 1−
m0

n
, (13)

αl = αl−1 −
1

n
, l = 1, . . . , L, (14)

andL = n − m0. Clearly,αL = 1/n, while in the last step of the FS we have
αL+1 = αL − 1/n = 0 and no trimming is performed. The typical initialization ina
multivariate framework is withm0 = v+1 observations in (13), so thatL = n−v−1.
A slightly larger value ofm0 is sometimes selected to improve numerical stability of
the initial estimates.

At step l = 1, . . . , L of the FS, the trimmed estimators (3) and (4) are computed
with weights

wi,αl
= 1 if i ∈ ι†αl

(15)

= 0 otherwise,

whereι†αl
= {i1, . . . , iml

} is the set of the indices of theml = ⌊(1−αl)n⌋ observations
that form thel-th fitting subset. Specifically,ι†αl

is obtained by taking the units with
theml smallest squared distances

d2i,αl−1
= (xi − µ̃αl−1

)′Σ̃−1
αl−1

(xi − µ̃αl−1
), (16)
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computed from the estimates with trimming levelαl−1. The initial setι†α0
, of cardi-

nality m0 = ⌊(1 − α0)n⌋, is instead defined through an exogenous criterion, such as
the intersection of robust bivariate projections, or the optimization of a robust objective
function on subsets ofm0 observations. In§4 we adopt a random sampling strategy
that proves to be suitable for clustering purposes.

The presence of observations deviating from the null model can be displayed through
pictures that monitor relevant quantities along the search, such as the squared robust
distances (16) and their order statistics. For instance, ifonly n0 < n units actually
belong to the postulated population, we typically observe apeak in the monitoring plot
of the minimum (squared) distance outside the fitting subset, when this subset only
contains then0 “good” observations and the first outlier is about to enter. Aformal
procedure for precise identification of the contaminated observations is developed by
Riani et al. (2009) when (2) is the null model. Under the same assumption, Cerioli et al.
(2014) show that the FS estimators are both consistent and robust, while Johansen and
Nielsen (2016a,b) provide a general asymptotic theory for the FS in regression.

3 Robustness properties under wild trimming and a new
class of estimators

Unless otherwise stated, in what follows we make use of the replacement version of
the breakdown point (BP) of an estimator, which is defined as the smallest fraction of
outliers that can take the estimate over all bounds. A well known result of Lopuhaä
and Rousseeuw (1991, Th. 2.1) is that the maximal BP of any translation equivari-
ant location estimator cannot exceed⌊(n + 1)/2⌋/n. An estimator of locationt(·)
is translation equivariant ift(x + c) = t(x) + c. Instead, we say that an estimator
is quasi-translation-equivariant if it is translation equivariant within a subspace (see
Proposition 2 below).

The result of Lopuhaä and Rousseeuw (1991) corresponds to the intuitive statement
that we should trim at most a portionα = ⌊(n − 1)/2⌋/n of the observations, in
order to get rid of the possible contaminants and to base our estimate on a subset of
at least⌊n/2⌋+ 1 “good” data points. However, in this paper we use trimming levels
much larger than 50% and it is natural to wonder what are the breakdown properties
of our location estimators. There are only two possibilities: either our estimators are
translation equivariant and their BP is⌊(n+1)/2⌋/n even if the trimming level is much
larger than⌊(n − 1)/2⌋/n, or they can achieve a BP much larger than 50% but they
are not translation equivariant. The latter claim holds. Formally, we define a class of
trimmedquasi-translation-equivariant location estimators whose breakdown point can
be arbitrarily higher than 50%, depending on the chosen level of trimming.

To do so, we fix a pointx0 ∈ R
v. We define ananchoredclass of estimators,

saytx0(·), which correspond to the original MCD (or FS, or other trimmed) estimator.
Given a sample ofv-variate observationsX = {x1, . . . , xn}, the anchored estimator

6



of the location parameterµ for trimming levelα is then

tx0(X ) =
1

⌊n(1− α)⌋

⌊n(1−α)⌋
∑

i=1

x‡
i , (17)

wherex‡
⌊n(1−α)⌋ = {x‡

1, . . . , x
‡
⌊n(1−α)⌋} is the minimizer of the objective function

among all the subsets of⌊n(1 − α)⌋ points ofX whose convex hull containsx0. We
remark that in this paper we indicate with the term “objective function” the objective
function of any estimator of interest, be it MCD, or any another high-breakdown mul-
tivariate estimator (excluding FS which involves a sequence of selection steps); and
with the term “solution” to the objective function the estimator itself. The anchored
estimator arises as a solution to an anchored objective function, that is, a constrained
objective function that we now formally define. Specifically, we look for solutions of
the objective function subject to

∃ (λ1, . . . , λ⌊n(1−α)⌋) : λi ≥ 0 and

⌊n(1−α)⌋
∑

i=1

λi = 1 and ||x0−

⌊n(1−α)⌋
∑

i=1

λix
‡
i || = 0,

(18)
for a norm|| · ||.

Some results for anchored trimmed estimators follow. A key issue in their deriva-
tion is that any point within the support ofG0(x) also belongs to the convex hull of the
points in the support. Additionally, convex hulls are non-decreasing: for every two sets
A andB, whereA ⊆ B, the convex hull ofA is a subset of the convex hull ofB.

Proposition 1 If x0 belongs to the convex hull of the points inX , the anchored trimmed
estimator exists. Ifx0 belongs to the interior of the support ofG0(x), the probability
that the anchored trimmed estimator of location exists converges to the unity with the
sample size.

Proof. By the non-decreasing property of convex hulls, the convex hull of any subset of
size⌊n(1 − α)⌋ is a subset of the convex hull ofX . Consider the set of all subsets of
size⌊n(1−α)⌋ and callhj the convex hull of thej-th subset, andh the convex hull of
X . It is straightforward to check that∪hj ⊆ h. Therefore, ifx0 belongs to the convex
hull of X , there must exist at least one subset of size⌊n(1 − α)⌋ whose convex hull
containsx0. To see the second part, suppose thatX⌊n(1−α)⌋ = {x1, . . . , x⌊n(1−α)⌋} is
sampled fromG0(x). The probability that anyx0 in the interior of the support belongs
to the convex hull ofX obviously converges to the unity. �

For anyx0 in the interior ofG0(x), existence is often very likely even for smalln.
As few as two or three well placed points are enough regardless of v. It can also be
argued that the solution is unique ifx0 is in the interior of a unimodal and elliptically
contouredG0, in view of Proposition 1 and the uniqueness results in Davies (1987)
and Butler et al. (1993). Additionally,x0 does not need to be chosen in advance, as in
the case of the FS (see§4, where we adopt a sampling strategy for a data-driven choice
of x0), or it can be easily tuned if no solution is found for an initial choice. While
computation of a convex hull is rather computationally expensive (being in general
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O(nv/2 + 1)), checking whether anyx0 belongs to the convex hull of a set ofn points
has quadratic complexity. Hence, ifx0 is fixed, one could verify in advance whether
the anchoring point belongs to the convex hull ofX before computing robust estimates.

The following result assumes that the anchoring point is fixed.

Proposition 2 The anchored trimmed estimator of location is quasi-translation-equivariant.
Formally, for any collection of pointsX = {x1, . . . , xn} and a fixedx0 ∈ R

v within
their convex hull there exists a setA(x0,X ) ⊆ R

v such that ift(x) + c ∈ A(x0,X ),
thent(x + c) = t(x) + c.

Proof. If x0 belongs to the convex hull ofX , there exists at least one anchored estimator
by Proposition 1. Letx‡

⌊n(1−α)⌋ denote this solution. Fix any vector of constants, say
b ∈ R

v. By the properties of the objective function, ifx0 belongs to the convex hull of
x‡
⌊n(1−α)⌋ + b, then

tx0(X + b) = tx0(X ) + b. (19)

If x0 does not belong to the convex hull ofx‡
⌊n(1−α)⌋ + b, thenx‡

⌊n(1−α)⌋ + b is not an
admissible solution. Consequently, it will either happen that another subset ofX + b
is the solution to the anchored estimator problem, or that nosolution exists. In both
cases, the property of translation equivariance is lost. �

Denote withCX the convex hull ofX . From the proof of the previous proposition
it can be seen that

A(x0,X ) =
{

b : x0 ∈ Cx‡
⌊n(1−α)⌋

+b

}

.

We now discuss a restricted version of the BP, suitable for anchored estimators.

Proposition 3 For a fixedα, consider the substitution of(⌊nα⌋) points ofX such that
the chosen anchoring pointx0 belongs to the convex hull of the remaining⌈n(1−α)⌉.
Then, the anchored estimator of location(17) cannot break down. Consequently, the
BP (restricted to substitution of certain subsets ofX ) is equal to(⌊nα⌋+ 1)/n, where
α ∈ (0, 1) is the trimming level.

Proof. It is immediate to see that(⌊nα⌋ + 1)/n is an upper bound. Suppose that we
replaced⌊nα⌋+1 observations with arbitrary values. By definition, at leastone of these
values would not be discarded, hence leading to breakdown ofthe anchored estimator.
To see that(⌊nα⌋+1)/n is also a lower bound, fix a collection of (non-contaminated)
pointsX = {x1, . . . , xn}, with xi ∈ R

v. LetT = supx∈X ||tx0(x)||. Replace at most
⌊nα⌋ points ofX with arbitrary points to obtainY. Since there are⌊n(1−α)⌋ points of
the original sampleX , and by assumption these form a convex hull containingx0, there
exists at least one solution fort(Y), wheret(·) is the unconstrained version oftx0(·).
This solution is such that||t(Y)|| < T by the properties oftx0(·). Consequently, after
anchoring there are one or more possible solutions to the anchored objective function,
at least one of which is bounded. The bound depends only on theoriginal sample
points. It only remains to show that the anchored estimatortx0(X ) chooses one of the
bounded solutions, which follows since the unbounded solutions either correspond to
unbounded objective functions, or anyx0 ∈ R

v does not belong to their convex hull.
�
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An important remark about anchored estimators is that they are not translation
equivariant. A sort of hard shrinkage towardsx0 happens: as soon as a translation
movesX far enough fromx0, the translation equivariant solution is mapped in a
bounded set close tox0. This is illustrated in Figure 1, where we setα = 80%. In
the top left panel, the MCD and anchored MCD coincide (blue dot). In the top right
panel, data are translated by a small amount and still the anchorx0 (red cross) is within
the convex hull of the optimal MCD subset. If we translate by alarger amount, the
anchor is now poorly chosen and the MCD (greenX) does not coincide with the an-
chored MCD anymore (bottom left panel). A data-dependent choice ofx0, such as the
one adopted in§4, will help to prevent this situation. The fact that anchoring is useful
is illustrated in the bottom right panel, where a cluster of outliers is added. The MCD
is now within this cluster, as its points have a very small scatter, while the anchored
MCD is not affected.

Another important remark concerns the seemingly restrictive assumption that sub-
stitution of points inX is restricted to a subset which guarantees existence of a convex
hull containingx0. It shall be noted though that the substituted points are (asusual)
replaced by arbitrary points. Additionally, as said before, x0 need not be chosen in
advance and can hence be tuned to guarantee existence. Once the anchored estimators
exist, they cannot break down. For this reason, it can be readily shown that theaddi-
tion breakdown point – which is based on adding contaminating points to the data set,
instead of replacing them: see Hennig (2004) – is not restricted.

Theorem 1 Fix g > 0 as the number of points to be trimmed. Suppose that the chosen
anchoring pointx0 belongs to the convex hull ofX . Then, the anchored estimator of
location(17)has an addition breakdown point ofg/(n+ g).

Proof. Suppose thatg+1 contaminated points are added. Since onlyg can be trimmed,
at least one contaminated point will be included in the estimators and possibly lead to
break down. Therefore an upper bound for the addition breakdown point isg/(g + n).
Note now that, since then points originally included in the dataX are not modified or
removed, by assumption onx0 the anchored estimator exists with at least one solution
such that

|tx0(X )| ≤ T

for a certain finite valueT which depends only on the original data. It only remains
to show that the anchored estimatortx0(X ) chooses one of the bounded solutions,
which is straightforward as the unbounded solutions eitherhave unbounded objective
functions, or anyx0 ∈ R

v does not belong to their convex hull. �

A fairly similar discussion can be put forward for affine equivariant estimators.
Recall for instance that an estimator of locationt(·) is affine equivariant ift(Ax+c) =
At(x) + c. Davies (1987) shows that the BP of any affine equivariant covariance esti-
mator is at most given by (8), which might be much smaller than50%. The trimming
level obviously has an upper bound of⌊(n− v− 1)⌋/n to guarantee that the estimated
covariance matrix is positive definite. If we use a trimming levelα ∈ (0, 1−(v+1)/n),
a reasoning along the lines of the proof of Proposition 3 can be used to show that the
BP of the anchored estimator of scatter is equal to(⌊nα⌋+ 1)/n.
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Figure 1: Anchoring estimators in action. The red cross indicates the anchoring point.
The blue dot is the anchored estimator, surrounded by the convex hull (containing the
anchoring pointx0). When this differs from the MCD, the MCD is shown as a green
X.
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The anchored estimator of scatter is found along the same lines as the anchored
estimator of location: given a sample ofv-variate observationsX = {x1, . . . , xn} and
trimming levelα, the anchored estimators of the location parameterµ and scatterΣ are

tx0(X ) =
1

⌊n(1− α)⌋

⌊n(1−α)⌋
∑

i=1

x‡
i , Tx0(X ) =

ζα
⌊n(1− α)⌋

⌊n(1−α)⌋
∑

i=1

(x‡
i−tx0(X ))(x‡

i−tx0(X ))′,

(20)
wherex‡

⌊n(1−α)⌋ = {x‡
1, . . . , x

‡
⌊n(1−α)⌋} is the subset of⌊n(1− α)⌋ points ofX min-

imizing the objective function among all subsets whose convex hull containsx0.

Theorem 2 Assume contaminating points are in general position, that is, they do not
lie in a lower dimensional space. For a fixedα, consider the substitution of(⌊nα⌋)
points ofX such that the chosen anchoring pointx0 belongs to the convex hull of the
remaining⌈n(1− α)⌉. For α ∈ (0, 1− (v + 1)/n), the anchored estimator of scatter
has (restricted) BP(⌊nα⌋+ 1)/n.

Proof. The fact that(⌊nα⌋+1)/n is an upper bound is shown as in the proof of Propo-
sition 3. In fact, ifα = 1− (v + 1)/n, no positive definite solution exists. For smaller
values ofα, if we replace(⌊nα⌋ + 1) observations with arbitrary values, at least one
of these values would not be discarded. Consequently, all solutions would become un-
bounded. To see that(⌊nα⌋+1)/n is also a lower bound, we need to show two things.
First, we need to show that the minimum covariance determinant cannot be arbitrarily
increased. To see this, replace at most⌊nα⌋ points ofX with arbitrary points to obtain
Y. Since there are⌊n(1−α)⌋ points of the original sampleX , and by assumption there
exists at least one anchored solutionΣ̂, there exist at least one solution with bounded
determinant. The anchored estimator chooses one of the bounded solutions as the un-
bounded solutions either have unbounded objective functions, or anyx0 ∈ R

v does not
belong to their convex hull. Secondly, we need to show that the minimum covariance
determinant cannot be arbitrarily decreased. This is straightforward from the assump-
tion thatX and contaminating points are in general position (see detailed reasoning on
this point in Davies (1987); Lopuhaä and Rousseeuw (1991)). �

As in Theorem 1, it is possible to show that the addition BP forΣ̂ is unrestricted.

4 Wild adaptive trimming for robust cluster analysis

Our main strategy for performing robust cluster analysis through wild (adaptive) trim-
ming follows the general principle that several analyses from more than one starting
point are necessary to reveal the clustering structure. When the data come from model
(10), the trimmed estimators computed withα < 0.5 typically use observations from
several clusters and may thus fail to identify the differentpopulations. On the other
hand, starting with a subset of observations belonging to the same population would
lead to high values of the robust distances (7) for the observations from other clus-
ters, which are then detected as outliers. Empirical evidence of this behaviour has
been shown in an exploratory context (see, e.g., Atkinson etal., 2004, 2017), while the
robustness properties of§3 provide a more general theoretical justification.
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With a slight abuse of notation, in what follows we letG0(x) denote the distribution
function of one of the normal mixture components in (10), to be taken as the target
population with parametersµ andΣ, instead of the distribution of the whole mixture.
That is, we now let

G0(x) = Φµ,Σ(x)

as in (2), with
µ = µk∗ , Σ = Σk∗

for a givenk∗ ∈ {1, . . . ,K}. Correspondingly, we takeG1(x) to be the (unspecified)
distribution function mixturing all the other components and the contaminated obser-
vations. It is then crucial to use trimming levels in the computation of (3) and (4) that
could lead to estimation ofµ andΣ, and thus to identification ofG0(x), under model
(1). This task is clearly made possible by the adoption of a wild trimming approach,
and by the fact that, as noted,G0(x) now identifies a single population.

We suggest a divisive clustering approach that splits theK-population estimation
problem defined by (10) intoK one-population steps, which take advantage of the
good breakdown properties of wild trimming estimators and do not force all units to
be classified. In an adaptive framework, we start the trimming procedure from values
of α much larger than 0.5, typically including onlyv + 1 observations or a slightly
larger number, in the first estimation step. The details of our robust divisive clustering
procedure are described below. For concreteness we refer towild adaptive trimming
through the FS, but any other procedure that shares the same properties (e.g., based on
the MCD) could be potentially used.

1. Computation of minimum Mahalanobis distances from random starts. We
performR forward searches starting fromR random subsets of sizem0 = v+1.
For all the searches and eachml = ⌊(1 − αl)n⌋, l = 0, . . . , L, we control
the ratio between the maximum and the minimum eigenvalue of the estimated
covariance matrix. We impose that this ratio is smaller thana certain threshold,
sayc, in order to avoid the detection of spurious groups due to thepresence of
almost collinear points. We discard the searches (whose number, say, isr) for
which this condition is not fulfilled. For each of theR−r remaining searches and
each subset sizeml, we store the value of the minimum Mahalanobis distance of
the units not belonging to the fitting subset:

dmin(ml) = min
√

d2i,αl
, i /∈ ι†αl

, (21)

where, forl = 0, . . . , L, d2i,αl
is defined as in (16). In all the examples that

follow we setR = 500, although a larger number of random searches should be
performed in the case of big data sets. Indeed, it usually suffices that the majority
of points of the starting subset belong toG0(x) in order to obtain high values of
the robust distances (7), and thus of (21), for the observations not belonging
to this population. The probability of randomly selectingη0 = ⌊m0/2⌋ + 1
observations from a sample ofN units drawn fromG0(x) is

(

N
η0

)

/
(

n
η0

)

, which
is often not exceedingly small whenm0 = v + 1 andn is of the order of just a
few hundreds. Furthermore, in the FS we observe that the method is often able
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to recover from a bad starting point, by replacing contaminated observations
in the fitting subset with others coming fromG0(x) (see, e.g., Atkinson et al.,
2004). This phenomenon, which is called “interchange”, clearly enhances the
diagnostic power of (21) and increments the probability of detectingG0(x) with
a fixed number of random starts, as our empirical examples show in §5.

2. Envelope calibration. If all the units inι†αl
come fromG0(x) and the units not

in ι†αl
come from different populations (separated fromG0(x)), the observation

giving rise todmin(ml) will be an outlier and its distance will be large if com-
pared to the distances of the units inι†αl

. We thus need to compare the value
of dmin(ml) with the quantiles of its distribution for each stepl = 0, . . . , L.
The simulation results given in Atkinson et al. (2006) show that the envelopes
of dmin(ml) starting from random subsamples are much larger than those based
on robust initialization whenml < n/3, especially in the case of extreme quan-
tiles. However, this difference decreases asl increases and becomes negligible
for subsets of sizeml > n/2. A reliable approximation to envelopes based on
the theory of order statistics is given in Riani et al. (2009), but only for the case
of robust initialization.

Since we are interested in values ofml which may be much smaller thann/2, we
have simulated the 1%, 50%, 75%, 90%, 95%, 99%, 99.9%, 99.99%, 99.999%
and 99.9999% percentiles ofdmin(ml), for l = 0, . . . , L, under the normal
modelG0(x) = Φµ,Σ(x) and using 1,000,000 random initializations. In what
follows we call these envelopes thenull envelopes, since they correspond to the
situation where only one population exists, i.e. (10) holdswith K = 1. They
have been obtained for each value ofv ≤ 10 and a grid of values ofn from 50 to
2000. Ifn is not in the grid we use linear interpolation between the twoadjacent
values.

3. Convex hull constraint and pruning. The observations entering in the first
steps of the FS are those more likely to come fromG0(x). It is thus natural to
adopt a data-dependent anchoring procedure and to fix the anchorx0 as a point
which lies inside the convex hull of the observations belonging to the fitting
subsetι†αl

. In this way the anchor will not be too far from the true mode of
G0(x), at least whenG0(x) belongs to the elliptical family, untilι†αl

remains free
of contaminated observations. Therefore, we findαl as the trimming level prior
to the first exceedance of the null envelope ofdmin(ml) for a certain probability
level, sayς . As we see in§5, in the first steps just after the random start the
values ofdmin(ml) may be above the 99% threshold due to random fluctuations
and the number of different trajectories diminishes considerably asml increases.
In fact, all random starts of sizem0 = v+1 initialized with more than⌊v/2⌋+1
observations fromG0(x), as soon as the subset size grows, tend to remove the
observations from the other groups and include other observations fromG0(x).
Therefore, after a few steps, theR − r searches naturally anchor themselves to
a few centroids and a few covariance matrices. In what follows we callm† the
subset size for which we start to impose the “anchoring”. More precisely,

m† = max{(minml : dmin(ml) > dς(ml)),mingrsize+ 1} − 1,
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wheredς(ml) is theς-quantile ofdmin(ml) andmingrsize is the minimum
group size that we are willing to tolerate. For allR − r trajectories we monitor
whether the units which are progressively included forml > m† satisfy the con-
vex hull constraint (18). Therefore in practice there is no need to choose a partic-
ular anchoring point, such as the centroid or the median of the units belonging to
subset at stepm†, because the satisfaction of the convex hull constraint ensures
we anchor so to obtain an estimator which cannot break down (see Proposition
3). As a result of this procedure we prune some of the trajectories ofdmin(ml),
i.e. their monitoring ends much earlier than at the final stepl = L because the
convex hull constraint fails to be satisfied. Letm† + at be the final subset size
for trajectoryt (t = 1, . . . , R − r). In the examples which follow, in order to
obtain a satisfactory degree of pruning, we takeς = 0.9999. It shall be noted that
identical results can be obtained if we increase the confidence band to 99.9999%,
or decrease it to 99%. In the latter case, however, the numberof random starts
which must be used has to be considerably increased. Otherwise, we may lose
trajectories which completely end up into one group but which, due to random
fluctuations, are pruned before the peak due to loss of anchorage because the
convex hull is too “small”.

4. Extreme exceedance of null envelopes. The envelopes ofdmin(ml) are point-
wise because their confidence level is referred to a fixed subset sizeml. In the
adaptive trimming framework of the FS we potentially make many comparisons,
one for each value ofml. Our detection rule thus needs to allow for simultaneity.
In order to avoid random exceedances, we select all the prunedR−r trajectories
of dmin(ml) for which there is an exceedance of a very extreme threshold of the

null envelope, saydς∗(ml). Let d(t)min(ml) be the trajectory for thet-th pruned
search. Then,m∗

t is the first subset size for which

d
(t)
min(ml) > dς∗(ml) ml = m†,m†+1, ...,m†+at, t = 1, 2, . . . , N−r.

(22)
In what follows we takeς∗ = 0.999999.

5. Divisive split. Given that our purpose is to identify and remove first the group
which is most remote from the others, among the searches for which condition
(22) is verified we take the one (say thet∗) for which

rsj∗ = argmax
t

rst, (23)

where

rst = max
ml

d
(t)
min(ml)− d0.5(ml)

d0.99(ml)− d0.5(ml)
. (24)

We then assign theml − 1 observations which formι†αl−1
to a tentative group.

6. Iteration of previous steps. The previous steps (1-5) are iterated until with the
units which are left out we end up with one of the two followingcases: A) their
number is smaller thanmingrsize. B) we do not observe any exceedance of
the extreme null envelope.
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7. Robust tree. At the end of the procedure we display the binary splits and the
resulting clusters by a tree-like structure. In the vertical axis of the tree we
show the distance levelrsj∗ (see Equation 23) in which the various groups are
formed (it is also possible to use a rescaled version ofrsj∗ in case one wants
to standardize the results over different datasets). One additional bonus of the
suggested procedure is that it enables us to immediately appreciate the degree
of separation (overlapping) of each group with the remaining part of the sample.
Clearly the higher is the value of internal cohesion of a group with respect to the
rest, the greater is the value ofrsj∗ . The outliers and the other units not assigned
to any of the tentative groups are left aside, thus making thetree robust.

We note that, by considering a crude rule like (22), we are likely not to consider
all units belonging to a particular group. Therefore, a successive reweighting step
(which in the spirit of the FS can be performed adaptively; see also Dotto et al. (2017))
is necessary for refining the tentative groups which have been found. A preliminary
proposal, rooted in an exploratory framework, is describedin (Atkinson et al., 2004,
p. 369). However, in our divisive procedure, the fact of leaving out the units which
are at the boundary of a particular group helps to detect the remaining groups in the
successive steps of the procedure. The null envelopes obtained after removal of the
first cluster, being based on a number of observations largerthan the number of units
belonging to the remaining populations, will be flatter and tighter, thus increasing the
probability of exceedance of the extreme envelope in the central part of the algorithm.

5 Robust divisive clustering in action

5.1 Geyser data

In order to illustrate the performance of our divisive clustering procedure, we start by
considering the “geyser data set”, a well known applicationin robust clustering (see,
e.g., Garcı́a-Escudero and Gordaliza, 1999). This bivariate data set, obtained from
the Old Faithful Geyser, contains the eruption length and the length of the previous
eruption for 271 eruptions of this geyser. Both variables are measured in minutes.
The data show the presence of three main groups. Close to the origin there is also
a small group of “short followed by short” eruptions, which are not very common (6
observations, i.e. 2.2% of the sample size).

The left panel of Figure 2 shows the forward plot of the trajectories of minimum
Mahalanobis distances computed from 500 random starts, together with 1%, 50%, 99%
and 99.9999% simulation envelopes from model (10) withK = 1. To provide a com-
parison with previous applications of the FS, in this plot wedo not anchor the estimator
and all trajectories are monitored up toml = n. In presence of a homogenous popula-
tion of sizen, all theR trajectories ofdmin(ml) rapidly converge to a single trajectory
which tends to remain inside the envelopes up toml = n. In this situation the shape
of the envelopes ofdmin(ml) looks like the prows of viking longships, i.e. they are
virtually horizontal in the centre of the plot and rapidly increase asml tends ton due
to the inclusion in the final steps of the observations comingfrom the tails of the dis-
tribution. On the contrary, if model (10) holds withK > 1 and if there is a group with

15



size (say)n × 0.2, for all the searches which start in this group we observe a rapid
increase in the trajectory ofdmin(ml) asml tends ton× 0.2. The same also typically
happens for the searches such that them0 = v + 1 initial observations contain at least
⌊v/2⌋+1 units from the group, due to the interchange of units from other groups as the
subset size grows. After this subset size, as observations from other groups joinι†αl

,
we are likely to observe a sudden decrease in the trajectory of dmin(ml) and its values
will be even below the lower quantiles of the null envelopes for a single homogenous
population of sizen. It is an evidence of the extreme effect that contamination by dif-
ferent populations can produce on parameter estimates. Thesame effect will lead to a
“loss of anchorage” when we impose the convex hull constraint (18). The plot in the
left panel of Figure 2 reveals some trajectories which go persistently above the extreme
99.9999% threshold around subset sizeml = 90. Similarly, aroundml = 170 we can
observe two trajectories which go outside the extreme envelope and, to a minor extent,
another trajectory which spends some time above this threshold just beforeml = 200.
All trajectories converge into one fromml = 230 onwards. It is interesting to notice
that before all the trajectories converge into one there is apersistent exceedance of the
lower threshold. The same phenomenon is also visible aroundml = 100, shortly after
the first peak. In this example, given that the first exceedance of the extreme envelope
is whenm† = 76, for each ofR− r trajectories we impose the convex hull constraint
from this step and findm† + at (t = 1, 2, . . . , R − r). The right panel of Figure 2
shows the pruned trajectories. For example, for the 3 trajectories exceeding the ex-
treme envelope the constraint is fulfilled up tom† + a1 = 107, m† + a2 = 107 and
m† + a3 = 97. In order to understand which is the group which is most remote from
the others we compute indexrst given in equation (24), select the trajectory associated
with the maximum value and select the step where first exceedance of extreme enve-
lope takes place. In this case this leads to the identification of a first tentative group
made up ofm∗ = 83 units with a corresponding value ofrsj∗ = 9.71

It is interesting to notice that the number of searches whichend up with the three
trajectories is 152, 144 and 177, respectively. Therefore,starting from 500 random ini-
tializations in almost 95% of the times we have reached trajectories which collapse into
just one group. This also implies that in this example it was not necessary to consider
as many as 500 random starts to elucidate the existence of three distinct groups.

The random start FS procedure is repeated using the remaining 188 units, after
removal of tentative Group 1. The left panel of Figure 3 showsthe new pruned trajec-
tories ofdmin(ml) with the corresponding null envelopes based onn = 188. The same
argument described above leads to the identification of a second tentative group, again
of size 83 with a corresponding value ofrsj∗ = 9.23. The results of the third iteration
of our procedure are displayed in the right panel of Figure 3,obtained after removal
also of tentative Group 2. The pruned trajectories ofdmin(ml), with null envelopes
based onn = 105 units, now lead to the identification of a third tentative group of
size 84 withrsj∗ = 4.56. These three steps leave us with 21 unassigned units without
apparent structure. Therefore, the procedure terminates and we setK = 3.

The binary splits and the resulting clusters are displayed in a tree-like structure
in Figure 4, while our robust tentative clustering of these data is given in Figure 5.
The latter plot, given that it has on the vertical axis the value ofrsj∗ , not only shows
the order in which the groups are found but also reflects theirdegree of compactness.
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Figure 2: Geyser data. Left panel: forward plot trajectories of minimum Mahalanobis
distances from 500 random starts monitored up toml = n with 1%, 50%, 99% and
extreme 99.9999% null envelopes. Right panel: trajectories of minimum Mahalanobis
distances pruned after anchoring the estimators and imposing the convex hull con-
straint. In the right panel the horizontal axis goes up to110 ≈ max(m† + at) = 107).

Indeed, the group on the top left of Figure 5 (which is found inthe first divisive step)
appears to be the most compact one, while the cluster on the top right (which is found
in the third divisive step) is the most dispersed one. The units not assigned to any of the
three main clusters correspond to some borderline observations and to the peculiar set
of “short followed by short” eruptions. We do not insist in labelling these eruptions as
outliers, or as representatives of a fourth, more uncommon,population. We believe that
the final interpretation will strongly depend on subject-matter knowledge and on the
purposes of the study. The important statistical finding from our robust cluster analysis
is that they do not belong to the three main populations that our method identifies.

5.2 M5 data

The geyser data set originates from well separated populations, with the possible addi-
tion of markedly different outliers. Another application with similar features (to Swiss
banknotes) is described in the Supplementary Material. We now show the performance
of our divisive procedure in a case with highly overlapping populations. The M5 data
were introduced by Garcı́a-Escudero et al. (2008) for assessing some trimming-based
robust clustering methods. The data (shown in Figure 6) are obtained from three nor-
mal bivariate distributions with fixed centers but different scales and proportions. One
of the components strongly overlaps with another one. To these data a uniform noise
contamination is sometimes added. However, in this application we concentrate on the
“uncontaminated version” of the data set withn = 1800, since our main interest is not
on the effect of widespread noise.

The top left panel of Figure 7 shows the monitoring of the trajectories of mini-
mum Mahalanobis distances from 500 random starts without pruning. This plot dis-
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Figure 3: Geyser data. Left panel: forward plot of pruned trajectories of minimum
Mahalanobis distances after removing the units from the first tentative group. Right
panel: forward plot of pruned trajectories of minimum Mahalanobis distances after
removing the units from tentative Groups 1 and 2.

plays three distinct trajectories aroundml = 400. It is interesting to see that around
ml = 500 there is a dip below the lower envelope for one trajectory before being
absorbed by another one which stands above the upper envelope. This data set has
also been analyzed by Atkinson et al. (2015), who manually choose a particular step
in the random start procedure and compare the units inside the fitting subset for the
various trajectories. The top right panel of Figure 7, whichshows the pruned trajecto-
ries of the same minimum Mahalanobis distances, avoids thismanual choice because
it enables us to appreciate that there is only one trajectorywhich exceeds the extreme
threshold and which terminates whenml = 427. All the other trajectories are pruned
much earlier and are completely inside the null envelopes. This is an indication that the
remaining trajectories refer to searches which include observations from other groups
which are outside the convex hull of the reference group and therefore we lose the good
propoerties of the anchored estimator. Considering the first exceedance of the extreme
envelope leads to the identification of a first tentative group of 308 observations. The
two bottom panels show the pruned trajectories of minimum Mahalanobis distances,
again from 500 random initializations, in the two successive steps of the divisive pro-
cedure. Also in this case pruning enables to identify just one trajectory outside the
extreme envelope and leads in a natural way to the identification of the underlying
group. The divisive procedure is detailed in Figure 8, whilethe left panel of Figure 9
shows the scatter plot of the original data with theK = 3 tentative groups which have
been found and the unclassified units. For clarity of interpretation, in Figure 9 the 99%
confidence ellipses have been added using the centroids and the covariance matrices of
the estimated groups. The overall performance of our methodis very good, with only
3.6% of the assigned observations clustered in the wrong group.
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Figure 4: Geyser data. Robust tree showing the details of thedivisive procedure. The
21 unassigned units clearly stand apart in the last split.

5.3 Comparison with TCLUST

We conclude our empirical analysis by comparing the resultsof our divisive proce-
dure with those obtained through the TCLUST methodology of Garcı́a-Escudero et al.
(2008), Fritz et al. (2012) and Ruwet et al. (2013). TCLUST isa robust model-based
clustering technique that relies on constrained maximization of a trimmed version of a
generalized classification likelihood function. The constraint is that

maxKk=1 λ̃1,k

minK
k=1 λ̃v,k

≤ c, (25)

whereλ̃1,k andλ̃v,k denote the largest and the smallest eigenvalue ofΣ̃k, respectively,
and c ≥ 1 is a fixed constant specified by the user. Values ofc close to 1 favour
solutions with spherical clusters, while high values ofc tend to produce one (or more)
large and dispersed cluster possibly overlapping with the other groups.

It is important to emphasize that, unlike our method, TCLUSTrequires to spec-
ify in advance a number of important parameters: the number of groupsK, the level
of trimmingα to be used in the generalized classification likelihood function and the
eigenvalue ratio restriction (25). Our adaptive-trimmingdivisive procedure finds in-
stead suitable values ofK andα from the data, while (25) is not needed because we
just fit one population at a time. Therefore, we can see this comparison as a worst-case
scenario for our technique, since we are not taking advantage of the prior information
which is used to initialize TCLUST.

In order to apply TCLUST to the data sets considered in this paper, we use the
number of clusters which we have found in an automatic way andwe setα equal to
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Figure 5: Geyser data. Robust tentative clustering intoK = 3 main groups after the
divisive procedure.

the proportion of units which are left unclassified by our procedure. We also fix the
restriction factorc = 100 in order to be able to find elongated clusters, such as the
one present in the M5 data set. For the geyser data and for the Swiss banknotes (an-
alyzed in the Supplementary Material), the results from TCLUST are similar to those
obtained with our method. Indeed, the adjusted Rand index between the two cluster-
ings is 0.95 for the geyser data and 0.88 for the Swiss banknote data. This means that
the performance of our divisive procedure is virtually equivalent to that of TCLUST,
provided that the latter is properly tuned through appropriate a priori information. The
outcome is somewhat different in the case of the M5 data set, for which the right panel
of Figure 9 shows the three-group robust clustering obtained by TCLUST. Although
the overall performance of this clustering is very good (themisclassification rate is
2.4%), it is clear that TCLUST underestimates the size of Population 3. The key issue
for explaining such a poorer performance in the identification of a dispersed group is
the rigid use of the trimming levelα made by TCLUST. Since in this example there are
no outliers, fixingα ≫ 0 leads TCLUST to trim all the observations that lie at the bor-
der of the more dispersed population, which is not instead the case for our procedure.
Through our adaptive trimming approach, we are able to detect the population bor-
ders in a flexible way and without penalizing uncommon structures too much. On the
contrary, TCLUST treats the farthest observations from Population 3, and in particular
those lying above Population 1, as uniform noise to be trimmed. We may thus expect
an improvement in the performance of TCLUST if the method could be embedded in
an adaptive trimming framework similar to that considered in our work.

6 Concluding remarks

This work is motivated by the requirement of robust and efficient procedures for clus-
tering multivariate data generated by mixture model (10) with additional contamina-
tion. Our approach replaces the originalK-population (robust) estimation problem
with K distinct (robust) one-population steps, which take advantage of the good break-
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Figure 6: M5 data. Scatter plot of the two variables. Cluster1 is very tight and lies
completely inside cluster 2. Clusters 2 and 3 also overlap.

down properties of trimmed estimators. For this purpose, wehave studied the theoreti-
cal behaviour of trimmed estimators when the trimming levelexceeds the usual bound
of 0.5, thus relaxing the familiar condition that at least half of the data should corre-
spond to the main population. We have shown that exact affine equivariance must be
lost, but it is a reasonable price to be paid in order to achieve arbitrarily high breakdown
for the resulting trimmed estimators. This conclusion parallels similar findings in other
situations where contamination produces only a minority of“good” observations, as in
the case of cell-wise contamination (see, e.g., Farcomeni,2014a,b; Agostinelli et al.,
2015; Rousseeuw and Van den Bossche, 2017). We also support the use of adaptive
trimming schemes, in order to explore the effect of different levels of trimming and
to find a sensible trade-off between robustness and efficiency. A further bonus of our
methodology is its ability to provide a reliable choice of the usually unknown number
of groups that correspond to genuine populations in model (10).

We have provided empirical evidence that our technique can perform well even
when there is considerable overlap among the groups. The price that we pay for sep-
arating the groups when they partially overlap is to trim a bit more than necessary in
steps (d) and (e) of our divisive procedure. Even if our trimming approach is adaptive
and provides a good trade-off between robustness and efficiency, there is the need of
additional theoretical work in order to find a stopping rule that guarantees the required
simultaneous test size when testing for exceedances of nullenvelopes. Similarly, pre-
cise estimation of the contamination rate in (1) and of the mixing proportions in (10)
are still open issues. A refined estimate of the population sizes, as well as a refined
identification of group membership, could be obtained by adding a confirmatory step
to the tentative clustering that we obtain by our divisive procedure. The confirmatory
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Figure 7: M5 data. Top left panel: trajectories of minimum Mahalanobis distances
from 500 random starts without pruning, together with 1%, 50%, 99% and 99.9999%
envelopes. Top right panel: forward plot of the same pruned trajectories. Bottom left
panel: forward plot of pruned trajectories of minimum Mahalanobis distances after
removing the units from the first tentative group. Bottom right panel: forward plot of
pruned trajectories of minimum Mahalanobis distances after removing the units from
the first two tentative groups.
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Figure 8: M5 data. Robust tree showing the details of the divisive procedure.
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Figure 9: M5 data. Left panel: tentative clustering from thedivisive procedure. Right
panel: tentative clustering from TCLUST whenK is set equal to 3 and the same trim-
ming level is used as in the divisive procedure. In both panels 99% confidence el-
lipses have been added using the centroids and the covariance matrices of the estimated
groups.
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step could also help to separate small and concentrated groups of contaminated obser-
vations from background noise (Hennig and Liao, 2013; Coretto and Hennig, 2016), as
well as to highlight the relationship between our procedureand robust fitting of mixture
models. Both these topics are the subject of ongoing research.
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