This paper deals with the stochastic Ising model with a temperature shrinking to zero as time goes to infinity. A generalization of the Glauber dynamics is considered, on the basis of the existence of simultaneous flips of some spins. Such dynamics act on a wide class of graphs which are periodic and embedded in Rd. The interactions between couples of spins are assumed to be quenched i.i.d. random variables following a Bernoulli distribution with support −1,+1. The specific problem here analyzed concerns the assessment of how often (finitely or infinitely many times, almost surely) a given spin flips. Adopting the classification proposed in (Comm. Math. Phys. 214 (2002) 373–387), we present conditions in order to have models of type F (any spin flips finitely many times), I (any spin flips infinitely many times) and M (a mixed case). Several examples are provided in all dimensions and for different cases of graphs. The most part of the obtained results holds true for the case of zero-temperature and some of them for the cubic lattice Ld= (Zd,Ed) as well.
Questo articolo tratta del modello di Ising stocastico con una temperatura che si riduce a zero con il passare del tempo. Si considera una generalizzazione della dinamica di Glauber, sulla base dell'esistenza di aggiornamenti simultanei di alcuni spin. Tali dinamiche agiscono su un'ampia classe di grafici che sono periodici. Si presume che le interazioni tra coppie di spin siano variabili aleatorie i.i.d. che seguono una distribuzione di Bernoulli con supporto -1, + 1. Il problema specifico qui analizzato riguarda la valutazione di quante volte un fissato spin cambia il suo stato. Adottando la classificazione proposta in (Comm. Math. Phys. 214 (2002) 373-387), presentiamo le condizioni per avere modelli di tipo F (ogni spin cambia stato un numero finito di volte), I (ogni spin cambia stato un numero finito di voltee) e M (un caso misto). Diversi esempi sono forniti in tutte le dimensioni e per diversi casi di grafi. La maggior parte dei risultati ottenuti vale per il caso di temperatura zero e alcuni di questi per il reticolo cubico Ld.
Stochastic Ising model with flipping sets of spins and fast decreasing temperature / Cerqueti, Roy; De Santis, Emilio. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - STAMPA. - 54:2(2018), pp. 757-789. [10.1214/17-AIHP820]
Stochastic Ising model with flipping sets of spins and fast decreasing temperature
Cerqueti, Roy;De Santis, Emilio
2018
Abstract
This paper deals with the stochastic Ising model with a temperature shrinking to zero as time goes to infinity. A generalization of the Glauber dynamics is considered, on the basis of the existence of simultaneous flips of some spins. Such dynamics act on a wide class of graphs which are periodic and embedded in Rd. The interactions between couples of spins are assumed to be quenched i.i.d. random variables following a Bernoulli distribution with support −1,+1. The specific problem here analyzed concerns the assessment of how often (finitely or infinitely many times, almost surely) a given spin flips. Adopting the classification proposed in (Comm. Math. Phys. 214 (2002) 373–387), we present conditions in order to have models of type F (any spin flips finitely many times), I (any spin flips infinitely many times) and M (a mixed case). Several examples are provided in all dimensions and for different cases of graphs. The most part of the obtained results holds true for the case of zero-temperature and some of them for the cubic lattice Ld= (Zd,Ed) as well.File | Dimensione | Formato | |
---|---|---|---|
Cerqueti_Stochastic-Ising_2018.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
425.53 kB
Formato
Adobe PDF
|
425.53 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.