UAV-based LiDAR survey provides very-high-density point clouds, which involve very rich information about forest detailed structure, allowing for detection of individual trees, as well as demanding high computational load. Single-tree detection is of great interest for forest management and ecology purposes, and the task is relatively well solved for forests made of single or largely dominant species, and trees having a very evident pointed shape in the upper part of the canopy (in particular conifers). Most authors proposed methods based totally or partially on search of local maxima in the canopy, which has poor performance for species that have flat or irregular upper canopy, and for mixed forests, especially where taller trees hide smaller ones. Such considerations apply in particular to Mediterranean hardwood forests. In such context, it is imperative to use the whole volume of the point cloud, however keeping computational load tractable. The authors propose the use of a methodology based on modelling the 3D-shape of the tree, which improves performance w.r.t to maxima-based models. A case study, performed on a hazel grove, is provided to document performance improvement on a relatively simple, but significant, case.

Single-tree detection in high-density LiDAR data from UAV-based survey / Balsi, Marco; Esposito, Salvatore; Fallavollita, Paolo; Nardinocchi, Carla. - In: EUROPEAN JOURNAL OF REMOTE SENSING. - ISSN 2279-7254. - STAMPA. - (2018), pp. 1-14. [10.1080/22797254.2018.1474722]

Single-tree detection in high-density LiDAR data from UAV-based survey

Marco Balsi;Salvatore Esposito;Paolo Fallavollita;Carla Nardinocchi
2018

Abstract

UAV-based LiDAR survey provides very-high-density point clouds, which involve very rich information about forest detailed structure, allowing for detection of individual trees, as well as demanding high computational load. Single-tree detection is of great interest for forest management and ecology purposes, and the task is relatively well solved for forests made of single or largely dominant species, and trees having a very evident pointed shape in the upper part of the canopy (in particular conifers). Most authors proposed methods based totally or partially on search of local maxima in the canopy, which has poor performance for species that have flat or irregular upper canopy, and for mixed forests, especially where taller trees hide smaller ones. Such considerations apply in particular to Mediterranean hardwood forests. In such context, it is imperative to use the whole volume of the point cloud, however keeping computational load tractable. The authors propose the use of a methodology based on modelling the 3D-shape of the tree, which improves performance w.r.t to maxima-based models. A case study, performed on a hazel grove, is provided to document performance improvement on a relatively simple, but significant, case.
2018
Airborne Laser Scanning (ALS), Forestry, Unmanned aerial vehicle (UAV), Trees
01 Pubblicazione su rivista::01a Articolo in rivista
Single-tree detection in high-density LiDAR data from UAV-based survey / Balsi, Marco; Esposito, Salvatore; Fallavollita, Paolo; Nardinocchi, Carla. - In: EUROPEAN JOURNAL OF REMOTE SENSING. - ISSN 2279-7254. - STAMPA. - (2018), pp. 1-14. [10.1080/22797254.2018.1474722]
File allegati a questo prodotto
File Dimensione Formato  
Balsi_Single-tree_2018.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 4.62 MB
Formato Adobe PDF
4.62 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1109277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 51
social impact