The current paper presents a data-driven detrending technique allowing to smooth complex sinusoidal trends from a real-world electric load time series before applying the Detrended Multifractal Fluctuation Analysis (MFDFA). The algorithm we call Smoothed Sort and Cut Fourier Detrending (SSC-FD) is based on a suitable smoothing of high power periodicities operating directly in the Fourier spectrum through a polynomial fitting technique of the DFT. The main aim consists of disambiguating the characteristic slow varying periodicities, that can impair the MFDFA analysis, from the residual signal in order to study its correlation properties. The algorithm performances are evaluated on a simple benchmark test consisting of a persistent series where the Hurst exponent is known, with superimposed ten sinusoidal harmonics. Moreover, the behavior of the algorithm parameters is assessed computing the MFDFA on the well-known sunspot data, whose correlation characteristics are reported in literature. In both cases, the SSC-FD method eliminates the apparent crossover induced by the synthetic and natural periodicities. Results are compared with some existing detrending methods within the MFDFA paradigm. Finally, a study of the multifractal characteristics of the electric load time series detrendended by the SSC-FD algorithm is provided, showing a strong persistent behavior and an appreciable amplitude of the multifractal spectrum that allows to conclude that the series at hand has multifractal characteristics.

A Smoothing Technique for the Multifractal Analysis of a Medium Voltage Feeders Electric Current / De Santis, E; Sadeghian, A; Rizzi, A. - In: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING. - ISSN 0218-1274. - STAMPA. - 27:14(2017), pp. 1-25. [10.1142/S021812741750211X]

A Smoothing Technique for the Multifractal Analysis of a Medium Voltage Feeders Electric Current

De Santis, E
;
Rizzi, A
2017

Abstract

The current paper presents a data-driven detrending technique allowing to smooth complex sinusoidal trends from a real-world electric load time series before applying the Detrended Multifractal Fluctuation Analysis (MFDFA). The algorithm we call Smoothed Sort and Cut Fourier Detrending (SSC-FD) is based on a suitable smoothing of high power periodicities operating directly in the Fourier spectrum through a polynomial fitting technique of the DFT. The main aim consists of disambiguating the characteristic slow varying periodicities, that can impair the MFDFA analysis, from the residual signal in order to study its correlation properties. The algorithm performances are evaluated on a simple benchmark test consisting of a persistent series where the Hurst exponent is known, with superimposed ten sinusoidal harmonics. Moreover, the behavior of the algorithm parameters is assessed computing the MFDFA on the well-known sunspot data, whose correlation characteristics are reported in literature. In both cases, the SSC-FD method eliminates the apparent crossover induced by the synthetic and natural periodicities. Results are compared with some existing detrending methods within the MFDFA paradigm. Finally, a study of the multifractal characteristics of the electric load time series detrendended by the SSC-FD algorithm is provided, showing a strong persistent behavior and an appreciable amplitude of the multifractal spectrum that allows to conclude that the series at hand has multifractal characteristics.
2017
Detrended multifractal fluctuation analysis; electric load; smoothed Fourier detrending
01 Pubblicazione su rivista::01a Articolo in rivista
A Smoothing Technique for the Multifractal Analysis of a Medium Voltage Feeders Electric Current / De Santis, E; Sadeghian, A; Rizzi, A. - In: INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING. - ISSN 0218-1274. - STAMPA. - 27:14(2017), pp. 1-25. [10.1142/S021812741750211X]
File allegati a questo prodotto
File Dimensione Formato  
DeSantis_Smoothing-Technique_2017.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1102980
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact