In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. We describe useful properties that allow us to greatly simplify the instances of allocation problems, without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been implemented and tested on a real-world application of allocation problems, namely, the Italian research assessment program known as VQR (Verifica della Qualità della Ricerca, or Research Quality Assessment)1. For the large university considered in the experiments, the problem involves thousands of agents and goods (here, researchers and their research products). The algorithms described in the paper are able to compute the Shapley value for most of those agents, and to get a good approximation of the Shapley value for all of them

Computing the Shapley value in allocation problems: approximations and bounds, with an application to the Italian VQR research assessment program / Lupia, Francesco; Mendicelli, Angelo; Ribichini, Andrea; Scarcello, Francesco; Schaerf, Marco. - In: JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE. - ISSN 0952-813X. - STAMPA. - 30:4(2018), pp. 505-524. [10.1080/0952813X.2018.1456791]

Computing the Shapley value in allocation problems: approximations and bounds, with an application to the Italian VQR research assessment program

Ribichini, Andrea;Schaerf, Marco
2018

Abstract

In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is possible to use money compensation to perform a fair allocation taking into account the actual contribution of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model such problems, in particular the Shapley value is a solution concept widely used for assigning worths to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this good theoretical notion is often quite difficult in real-world problems. We describe useful properties that allow us to greatly simplify the instances of allocation problems, without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that can be combined with approximation algorithms. The proposed techniques have been implemented and tested on a real-world application of allocation problems, namely, the Italian research assessment program known as VQR (Verifica della Qualità della Ricerca, or Research Quality Assessment)1. For the large university considered in the experiments, the problem involves thousands of agents and goods (here, researchers and their research products). The algorithms described in the paper are able to compute the Shapley value for most of those agents, and to get a good approximation of the Shapley value for all of them
2018
Coalitional games; Allocation problems; Game theory; Shapley value computation; Approximation algorithms; Research assessment exercises
01 Pubblicazione su rivista::01a Articolo in rivista
Computing the Shapley value in allocation problems: approximations and bounds, with an application to the Italian VQR research assessment program / Lupia, Francesco; Mendicelli, Angelo; Ribichini, Andrea; Scarcello, Francesco; Schaerf, Marco. - In: JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE. - ISSN 0952-813X. - STAMPA. - 30:4(2018), pp. 505-524. [10.1080/0952813X.2018.1456791]
File allegati a questo prodotto
File Dimensione Formato  
Lupia_Postprint-Computing-the-shapley_2018.pdf

Open Access dal 05/07/2019

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 651.23 kB
Formato Adobe PDF
651.23 kB Adobe PDF
Lupia_Computing-the-shapley_2018.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1102376
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact