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In allocation problems, a given set of goods are assigned to agents in such a way that the social welfare
is maximised, that is, the largest possible global worth is achieved. When goods are indivisible, it is pos-
sible to use money compensation to perform a fair allocation taking into account the actual contribution
of all agents to the social welfare. Coalitional games provide a formal mathematical framework to model
such problems, in particular the Shapley value is a solution concept widely used for assigning worths
to agents in a fair way. Unfortunately, computing this value is a #P-hard problem, so that applying this
good theoretical notion is often quite difficult in real-world problems.

We describe useful properties that allow us to greatly simplify the instances of allocation problems,
without affecting the Shapley value of any player. Moreover, we propose algorithms for computing lower
bounds and upper bounds of the Shapley value, which in some cases provide the exact result and that
can be combined with approximation algorithms.

The proposed techniques have been implemented and tested on a real-world application of allocation
problems, namely, the Italian research assessment program known as VQR (Verifica della Qualità della
Ricerca, or Research Quality Assessment)1. For the large university considered in the experiments, the
problem involves thousands of agents and goods (here, researchers and their research products). The
algorithms described in the paper are able to compute the Shapley value for most of those agents, and to
get a good approximation of the Shapley value for all of them2.
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1. Introduction

1.1. Coalitional Game Theory

Coalitional games provide a rich mathematical framework to analyze interactions between in-
telligent agents (see, e.g., Osborne & Rubinstein, 1994). We consider coalitional games of the
form G = 〈N, v〉, consisting of a set N of n agents and a characteristic function v. The latter
maps each coalition C ⊆ N to the worth that agents in C can obtain by collaborating with each
other. In this context, the crucial problem is to find a mechanism to allocate the worth v(N), i.e.,
the value of the grand-coalition N , in a way that is fair for all players and that additionally satis-
fies some further important properties such as efficiency (i.e., distributing precisely the available
budget v(N) to players, not more and not less). Moreover, for fairness and stability reasons, it is
usually required that every group of agents C gets at least the worth v(C) that it can guarantee
to the game.

Several solution concepts have been considered in the literature as “fair allocation” schemes
and, among them, a prominent one is the Shapley value (Shapley, 1953). According to this
notion, the worth of any agent i is determined by considering its actual contribution to all the
possible coalitions of agents.

1.2. Allocation Games

Among the various classes of coalitional games, we focus in this paper on allocation games,
which is a setting for analyzing fair division problems where monetary compensations are al-
lowed and utilities are quasi-linear (Moulin, 1992). Allocation games naturally arise in various
application domains, ranging from house allocation to room assignment and rent division, to
(cooperative) scheduling and task allocation, to protocols for wireless communication networks,
and to queuing problems (see, e.g., Greco & Scarcello, 2014b; Iera, Militano, Romeo, & Scar-
cello, 2011; Maniquet, 2003; Mishra & Rangarajan, 2007; Moulin, 1992, and the references
therein).

Computing the Shapley value of such games is a difficult problem, indeed it is #P-hard even
if goods can only have two different possible values (Greco, Lupia, & Scarcello, 2015). In this
paper we focus on large instances of this problem, involving thousands of agents and goods,
for which no algorithm described in the literature is able to provide an exact solution. We point
out that there are, however, some promising recent advances that identify islands of tractabil-
ity for the allocation problems where at most one good is allocated to each agent: it has been
recently shown that those instances where the treewidth (Robertson & Seymour, 1984) of the
agents’ interaction-graph is bounded by some constant (i.e., instances that exhibit a low degree
of cyclicity) can be solved in polynomial-time (Greco et al., 2015). The result is based on re-
cent advances on counting solutions of conjunctive queries with existential variables (Greco &
Scarcello, 2014a). Unfortunately, if the structure is quite cyclic this technique cannot be applied
to large instances, because its computational complexity has an exponential dependency on the
treewidth.

In some applications, one can be satisfied with approximations of the Shapley value.
With this respect, things are quite good in principle, since we know there exists a fully
polynomial-time randomized approximation scheme to compute the Shapley value in supermod-
ular games (Liben-Nowell, Sharp, Wexler, & Woods, 2012). The algorithm can thus be tuned to
obtain the desired maximum expected error, as a percentage of the correct Shapley value, and it
can be used for the allocation games we consider in this paper. However, not very surprisingly,
for very large instances one has to consider a huge number of samples, in order to stay below
a reasonable expected error. Maleki, Tran-Thanh, Hines, Rahwan, and Rogers (2013) provide
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bounds for the estimation error (as an absolute number rather than a percentage of the correct
value) if the variance or the range of the samples are known. They also introduce stratified
sampling as a method to further reduce the number of required samples. Other approximation
efforts based on sampling methods include the work of Castro, Gómez, and Tejada (2009). How-
ever, they bound the number of required samples using the Central Limit Theorem (Stein, 1972),
which only holds when the number of samples increases to infinity. Therefore, it has been argued
that their bound is not accurate (Maleki et al., 2013).

1.3. Contribution

In order to attack large instances of allocation problems, we start by proving some useful prop-
erties of these problems that allow us to decompose instances into smaller pieces, which can be
solved independently. Moreover, some of these properties identify cases where the computation
of the worth function can be obtained in a very efficient way.

With these properties, we are able to use the randomized approximation algorithm of Liben-
Nowell et al. (2012) even on instances that (when not decomposed) are very large (see Sec-
tion 6.1 for a brief description of the approximation algorithm, and Section 7.2 for our experi-
mental results).

Furthermore, we note that in some applications one may prefer to determine a guaranteed
interval for the Shapley value, rather than one probably good point. Therefore, we propose al-
gorithms for computing a lower bound and an upper bound of the Shapley value for allocation
problems. In many cases the distance between the two bounds is quite small, and sometimes
they even coincide, which means that we actually computed the exact value. We also used these
algorithms together with the approximation algorithm of Liben-Nowell et al. (2012), to provide
a more accurate evaluation of the maximum error of this randomized solution, for the considered
instances.

Moreover, by plugging the computed lower bound values into the randomized sampling algo-
rithm proposed by Maleki et al. (2013), we were able to express their error bound as a percentage
of the correct Shapley value, rather than as an absolute number, at least for our test instances.
This allowed us to compute approximate Shapley values for our largest test case (namely, the
2011-2014 research assessment exercise of Sapienza University of Rome), within 5% of the cor-
rect value with 99% probability, in a matter of hours (we refer the reader to Section 6.2 for a
brief description of Maleki et al.’s algorithm, and Section 7.2 for our experimental results).

1.4. The Case Study

We have tested the proposed techniques on large real-world instances of the VQR2011-2014
Italian research assessment exercise. This exercise requires every Italian research structure R
to select some research products, and submit them to an evaluation agency called ANVUR.
While doing so, the structure R is in competition with all other Italian research structures, as
the outcome of the evaluation will be used to proportionally transfer the funds allocated by the
Ministry to support research activities in the next years (until the subsequent evaluation process).
Every structure R is therefore interested in selecting and submitting its best research products.
For the sake of simplicity, we next simply speak of publications instead of research products
(which can also be patents, books, etc.), and of universities and departments instead of structures
and substructures (which can be other research subjects). The programme is articulated in two
phases: (1) Based on authors’ self-evaluations and on ANVUR guidelines,R selects and submits
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to ANVUR (at most) two publications for each one of its authors3, in such a way that any
product is formally associated with at most one author. (2) ANVUR formulates its independent
quality judgment about the submitted publications (the score assigned to each publication is
currently made known only to its authors), and the sum of the scores resulting from ANVUR’s
evaluation is then the VQR score of R. Eventually, R will receive funds in subsequent years
proportional to this score. Furthermore, ANVUR also published an evaluation of all departments,
based on the product scores (the score of each department was computed as the sum of the
scores of the products formally assigned to the authors in that department). Finally, the scores
were also used for evaluating individual researchers that had been recently hired by R (this
also greatly influenced R’s funds in subsequent years), as well as those researchers that were
members of PhD committees. Scores for recently hired researchers were computed as the sum
of the scores of the products formally assigned to them; data in this respect were published by
ANVUR in aggregated form only, for each department and for each scientific disciplinary sector.
Evaluations for researchers that were members of PhD committees were computed as the sum of
the scores of the best publications each one of them had coauthored, among all the publications
submitted for the VQR (for this evaluation, the formal assignment of publications to authors
was irrelevant); data in this respect were published by ANVUR in aggregated form only, for
each PhD committee.

The way ANVUR currently uses product scores, for the purposes described above, yields
evaluations that do not satisfy the desirable properties outlined in Section 4. In order to deal with
this issue, we have modeled the problem as an allocation game (Greco & Scarcello, 2013), with
a fair way to divide the total score of the university among researchers, groups, and departments
based on the Shapley value. The proposed division rule enjoys many desirable properties, such
as the independence of the specific allocation of research products, the independence of the
preliminary (optimal) products selection, the guarantee of the actual (marginal) contribution,
and so on.

2. Preliminaries

2.1. Allocation scenario and its associated game

In the setting considered in this paper, a game is defined by an allocation scenario A =
〈N,G,Ω, val, k〉 comprising a set of agents N and a set of goods G, whose values are given by
the function val mapping each good to a non-negative real number. The function Ω associates
each agent with the set of goods he/she is interested in. Moreover, the natural number k provides
the maximum number of goods that can be assigned to each agent. Each good is indivisible and
can be assigned at most to one player.

For a coalition C ⊆ N , a (feasible) allocation πA[C] is a mapping from C to sets of goods
from G such that: each agent i ∈ C gets a set of goods πA(i) ⊆ Ω(i) with |πA(i)| ≤ k, and
πA(i)∩πA(j) = ∅, for any other agent j ∈ C (each good can be assigned to one agent at most).

We denote by img(πA[C]) the set of all goods in the image of πA[C], that is, img(πA[C]) =⋃
i∈C πA[C](i). With a slight abuse of notation, we denote by val(S) the sum of all the values

of a set of goods S ⊆ G, and by val(πA[C]) the value val(img(πA[C])). An allocation πA[C]
is optimal if there exists no allocation π′A[C] with val(π′A[C]) > val(πA[C]). The total value
of such an optimal allocation for the coalition C is denoted by optA(C). The budget available
for A, also called the (maximum) social welfare, is optA(N), that is, the value of any optimal
allocation for the whole set of agents N (the grand-coalition). The coalitional game defined by

3There are exceptions to this rule: in specific circumstances, fewer than two publications are expected for some authors. To our ends,
this detail is immaterial.
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the scenario A is the pair 〈N, optA〉, that is, the game where the worth of any coalition is given
by the value of any of its optimal allocations. Note that optA(C) ≥ 0 holds for each C ⊆ N ,
since the allocation where no agent receives any goods is a feasible one (the value of an empty
set of goods is 0). The definition trivializes for C = ∅, with optA(∅) = 0.

g1 g2 g3 g4

a1 a2 a3

3 2 1 1

a1 a2

3 2 1 1

a1 a3

3 2 1 1

a2 a3

3 2 1 1

a1

3 2 1 1

a2

3 2 1 1

a3

3 2 1 1

Figure 1.: Allocation scenario A0 in Example 2.1.

Example 2.1: Consider the allocation scenario A0 = 〈{a1, a2, a3}, {g1, g2, g3, g4},Ω, val, 1〉,
depicted in a graphical way in Figure 1, where each edge connects an agent to a good he/she is
interested in, and it is possible to allocate just one good to each agent (k = 1). The figure shows
on the left an allocation for all the agents, with the edges in bold identifying the allocation of
goods to agents. Note that this is an optimal allocation, i.e., a feasible allocation whose sum
of values of the allocated goods is the maximum possible one. The value of this allocation is
val(g1) + val(g2) + val(g3) = 3 + 2 + 1 = 6.

The coalitional game associated with this scenario is GA0
= 〈{a1, a2, a3}, vA0

〉, where the
worth function vA0

is precisely optA0
. In particular, we have seen that, for the grand-coalition,

vA0
({a1, a2, a3}) = 6 holds. For each C ⊂ {a1, a2, a3} with C 6= ∅, an optimal allocation

restricted to the agents in C is also reported in Figure 1. It follows that the other values of
the worth function are vA0

({a1, a2}) = 5, vA0
({a1, a3}) = vA0

({a2, a3}) = 4, vA0
({a1}) =

vA0
({a2}) = 3, and vA0

({a3}) = 1. �

For any allocation scenario A = 〈N,G,Ω, val, k〉, we define the agents graph as the undi-
rected graph G(A) = (N,E) such that {i, j} ∈ E if there is a good g ∈ Ω(i) ∩ Ω(j). For any
agent i, the set of his/her neighbors, denoted by Neigh(i), is the set of the agents adjacent to i in
G(A).

2.2. Shapley value

The Shapley value (Shapley, 1953) is a well-known and widely used notion of solution concept
in game-theory and its applications. Let G = (N, v) be any coalition game, and let n = |N |.
According to this notion, the value of any agent i is determined by considering the marginal
contribution of i to any coalition C he/she may join, that is, the difference margi(C) = v(C ∪
{i}) − v(C) between what can be obtained when i collaborates with the agents in C and what
can be obtained without the contribution of i. More precisely, the Shapley value of i, denoted
by φi(G), is computed by taking the average, over all possible permutation ξ of agents, of the
marginal contribution of i to the coalition of agents preceding i in ξ.

Consider any permutation ξ of the agents in N , let C be the set of the agents before i in ξ.
Clearly, the same marginal contribution margi(C) will be obtained by considering any other
permutation of the agents in C and, for any of these permutations, for all possible permutations
of the remaining agents in N \ C \ {i}. It follows that the Shapley value of agent i can be
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expressed as follows:

φi(G) =
1

n!

∑
C⊆N\{i}

|C|!(n− |C| − 1)! margi(C).

Example 2.2: Consider again the allocation game GA0
introduced in Example 2.1. For agent 1,

we have:

φ1(GA0
) = 2!0!

3! · marg1({2, 3}) + 1!1!
3! · marg1({2}) + 1!1!

3! · marg1({3}) + 0!2!
3! · marg1(∅) =

1
3(6− 4) + 1

6(5− 3) + 1
6(4− 1) + 1

3(3− 0) = 15
6

Similarly, we can derive φ2(GA0
) = 15

6 and φ3(GA0
) = 6

6 . �

3. The VQR Allocation Game

Note that the VQR research assessment exercise can be naturally modelled as an allocation sce-
nario A = 〈R,P, products, val, 2〉 where R is the set of researchers affiliated with a certain
university R, P is the set of publications selected by R for the assessment exercise, products
maps authors to the set of publications they have written, and val assigns a value to each
publication. In the current VQR programme (covering years 2011-2014), the range of val is
{0, 0.1, 0.4, 0.7, 1}, with the latter value reserved to the excellent products.

In the submission phase, the values are estimated by the universities according to authors’
self-evaluations, and to the reference tables published by ANVUR (not available for some re-
search areas). At the end of the program, R will receive an amount of funds proportional to
VR = val(P), that is, to the considered measure of the quality of the research produced by
the university R. The first combinatorial problem, which is easily seen to be a weighted match-
ing problem, is to identify the best allocation scenario for the university. That is, to select a set
of publications P to be submitted, having the maximum possible total value among all those
authored byR in the considered period.

The final result may sometimes be different from the preliminary estimate, in particular be-
cause of those publications that undergo a peer-review process by experts selected by ANVUR,
which clearly introduces a subjective factor in the evaluation. We assume that the values used by
R in the preliminary phase do coincide with the final ANVUR evaluation for all products. This
is actually immaterial for the purpose of this paper, because we are interested here in the final
division, where only the final (ANVUR) evaluation matters. However, we recall for the sake of
completeness that, by adopting the fair division rule used in this paper, the best choice for all
researchers is to provide their most accurate evaluation, so that R is able to submit any optimal
selection of products to ANVUR. In particular, any strategically incorrect self-evaluation by any
researcher is useless, in that it cannot lead to any improvement in his/her personal evaluation,
while it can lead to a worse evaluation if the best total value for R is missed (Greco & Scarcello,
2013).

Example 3.1: Let us consider the weighted bipartite graph in Figure 2, whose vertices are
the researchers R = {r1, r2, r3} of a university R and all the publications they have written.
Edges encode the authorship relation products , and weights encode the mapping val providing
the values of the publications. Consider the optimal allocation ψ such that ψ(r1) = {p1, p3},
ψ(r2) = {p2, p4}, and ψ(r3) = {p6, p7}, encoded by the solid lines in the figure. Based on
this allocation, an optimal selection of publications to be submitted for the evaluation is Pψ =
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7 10 67 78

r1r1 r2r2 r3r3

p2p2 p3p3 p4p4 p5p5 p6p6 p7p7

76

p8p8p1p1

Figure 2.: Authors and products in Example 3.1.

{p1, p2, p3, p4, p6, p7}. The publications that are not submitted are shown in black in the figure.
Note that p2 is co-authored by r1, r2, and r3, while p3 is co-authored by r1 and r2. Thus,
the allocation scenario to be considered is A = 〈R,Pψ, products, val, 2〉, and the associated
coalitional game is the pair 〈R, opt(R)〉. In particular, the total value of the grand-coalition is
opt(R) = 45. �

The problem that we face is how to compute, from the total value obtained by R, a fair score
for individual researchers, or groups, or departments, and so on. As mentioned above, product
scores are currently used for evaluating the hiring policy of universities and the PhD committees,
and starting from 2017 such scores also contribute to evaluate the quality of courses of study.
Unfortunately, this is currently done in a way that fails to satisfy the properties that we outline
below. Instead, following (Greco & Scarcello, 2013), we propose to use the Shapley value of
the allocation game defined by the scenario selected by the given structure R as the division
rule to distribute the available total value (or budget) to all the participating agents. For the
allocation scenario in Example 3.1, we get φr1 = 29

2 , φr2 = 29
2 , and φr3 = 16. Notice that the

Shapley value is not a percentage assignment of publications to authors, but takes into account
all possible coalitions of agents. Note that r3 is not penalized by the fact that its best publication
p2 is assigned to researcher r2, in the submission phase determined by the optimal allocation
depicted in Figure 2. Similarly, r1 is not penalized by the fact that the worst publication p3 is
assigned to her/him (instead of being assigned to r2).

Another important property is that the value assigned to each researcher is independent of the
specific selection of products to be submitted, as long as the submission is an optimal one. For
instance, an equivalent selection would consist of the products Pψ′ = {p1, p2, p4, p5, p6, p7},
because of the optimal allocation ψ′ such that ψ′(r1) = {p1, p2}, ψ′(r2) = {p4, p5}, and
ψ′(r3) = {p6, p7}. It can be checked that no Shapley value changes for any researcher, by
considering the alternative allocation scenario A′ = 〈R,Pψ′ , products, val, 2〉 based on the se-
lection of products Pψ′ . On the other hand this nice property does not hold for many division
rules. For instance, assume that the value of each researcher is determined by the average score
of all the products evaluated by ANVUR of which he/she is a (co-)author4. Then, in the former
allocation scenario r1 gets 23/3, while in the latter one he/she gets 17/2. Symmetrically, r2 gets
a higher value in the former scenario and a lower one in the latter.

We will now recall the main desirable properties enjoyed by the division rule based on the
Shapley value used in this paper. We refer the interested reader to (Greco & Scarcello, 2013) for
a more detailed description and discussion of these properties.

Budget-balance. The division rule precisely distributes the VQR score of R over all its mem-
bers, i.e.,

∑
r∈R φr = VR.

Fairness. The division rule is indifferent w.r.t. the specific optimal allocation used to submit the

4The products that were not submitted cannot be used, because they miss a certified evaluation by ANVUR.
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products to ANVUR. In particular, the score of each researcher is independent of the particular
products assigned to him/her in the submission phase; moreover, it is independent of the specific
set of products P selected by the university, as long as the choice is optimal (i.e., with the same
maximum value VR).

Marginality. For any group of researchers S ⊆ R, φS ≥ marg(S,R), where φS =∑
i∈φS

φi and marg(S,R) = opt(R) − opt(R \ S). That is, every group is granted at least
its marginal contribution to the performance of the grand-coalitionR.

We remark the importance of the fairness property, as the choice of a specific optimal set of
products is immaterial for R, but it may lead to quite different scores for individuals (and for
their aggregations, assume e.g. that researchers r1 and r2 above belong to different departments).
As a matter of fact, this property does not hold for the division rules adopted by ANVUR for
the evaluation of both departments and newly hired researchers (see Section 1.4). The budget-
balance property, on the other hand, is violated by the division rule for evaluating researchers
who are members of PhD committees.

4. Useful Properties for Dealing with Large Instances

Recall that computing the Shapley value is #P-hard for many classes of games (see, e.g., (Aziz
& de Keijzer, 2014; Bachrach & Rosenschein, 2009; Deng & Papadimitriou, 1994; Nagamochi,
Zeng, Kabutoya, & Ibaraki, 1997)), including the allocation games, even if goods may have only
two possible values (Greco & Scarcello, 2014b).

For large instances, a brute-force approach is unfeasible, because to compute the value of each
agent i ∈ N , it would need to solve 2n optimization problems, where n = |N | is the number of
agents. This is particularly true in our case study, where n is in the order of thousands.

In order to mitigate the complexity of this problem, in this section we will describe some
useful properties of the Shapley value, in particular for allocation problems, which allow us to
simplify the instances in a preprocessing phase.

Let us consider in this section an allocation scenario A = 〈N,G,Ω, val, k〉, with G = 〈N, v〉
denoting its associated game, whose agents graph isG = (N,E). For such scenario we show the
following properties which allow us to simplify the game at hand without altering the Shapley
value of any player: Modularity, Null goods, Separability, Disconnected agent.

Theorem 4.1 (Modularity): Let {C1, C2} be a partition of agents of N such that Ω(i)∩Ω(j) =
∅, for every pair of agents i, j with i ∈ C1 and j ∈ C2. Let G1 = 〈C1, v1〉 (resp., G2 = 〈C2, v2〉)
be the coalitional game restricted to agents in C1 (resp., C2). Then, for each agent i ∈ N ,
φi(G) = φi(G1) + φi(G2).

Proof. LetG′1 = 〈N, v′1〉 andG′2 = 〈N, v′2〉 be two coalitional games such that, for eachC ⊆ N ,
v′1(C) = v1(C ∩ C1) and v′2(C) = v2(C ∩ C2). Contrasted with the games in the statement,
these games are defined over the full set of agents N .

Since there are no interactions between agents in C1 and agents in C2, the total value of the
optimal allocation for any coalition C is given by the sum of the values of the goods in the
optimal allocations restricted to the two sets of agents C ∩ C1 and C ∩ C2. Therefore, we have
v(C) = v′1(C) + v′2(C). Then, from the additivity property of the Shapley value, for each agent
i ∈ N , φi(G) = φi(G

′
1) + φi(G

′
2).

Consider now the games G1 = 〈C1, v1〉 and G2 = 〈C2, v2〉) restricted to agents in C1 and in
C2, respectively. Note that each player j ∈ N \ C1 is dummy with respect to the game G′1, so
that his/her Shapley value is null, and his/her presence has no actual impact on any other player
in G′1. In particular such dummy agents could be removed from the game without changing the
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Shapley value of the other agents, so that for every i ∈ C1, we have svi(G′1) = svi(G1) and the
result immediately follows (by using the same reasoning for G2).

From the above fact, it follows immediately that each connected component of the agents
graph can treated as a separate coalitional game.

Corollary 4.2: Let Z be any connected component of the agents graph. The coalitional game
GZ = 〈Z, vZ〉 associated with the allocation scenario obtained by restricting A to the players
in Z is such that the Shapley value of each player in Z is the same as in the full game associated
with A.

It is easy to see that goods having value 0 do not impact on the computation of the optimal
allocation. However, the existence of shared null goods between multiple agents induces con-
nections (among agents) which complicate the structure of the graph.

For instance, consider an allocation scenario A′ comprising three agents {r1, r2, r3} having
a joint interest only for one good, say g0, whose value is 0. Any other good has just a single
agent interested in it. In such a scenario, Corollary 4.2 cannot be used, since the agents graph
associated with the scenarioA′ consists of one connected component. On the other hand, without
g0, the agents graph would be completely disconnected and thus it would be possible to compute
the Shapley values immediately, by using Corollary 4.2. The following fact states that we can
indeed get rid of such null goods.

Fact 4.3 (No shared null goods): By removing all goods having value 0 from G, we get an
allocation scenario with the same associated allocation game.

Proof. Just observe that in the computation of the marginal contribution of any agent i to a
coalition C, there is no advantage for agents in C in using a good in Ω(i) having value 0.

If it is useful in the algorithms, we can also use Fact 4.3 in the opposite way, and add null-
value goods. Let g be a good with val(g) = 0 and let X = {a ∈ N | g ∈ Ω(a)} be the set of
agents that are interested in having g. Then, the game associated withA is the same as the game
associated with the allocation scenario where g is replaced by fresh goods g1, . . . g|X| such that
each of them is of interest to just one agent in X (hence, there are no connections in the graph
because of such goods).

The following property provides us with a powerful simplification method for allocation
games. Intuitively, the property states that any set of agents Z that does not exhibit an effec-
tive synergy with the rest of the agents can be removed from the game and solved separately.

Theorem 4.4 (Separability): Let Z be any coalition such that opt(Z)+opt(N \Z) ≤ opt(N).
Then, we can define from the allocation scenario A two disjoint allocation scenarios restricted
to agents Z and N \ Z, respectively, that can be solved separately. For each player i ∈ N ,
we can compute its Shapley value in the game associated with A by considering only the game
associated with the restricted scenario where i occurs.

Proof. Denote N \ Z by Z̄, and consider the allocation games G1 = 〈Z, v1〉 and G2 = 〈Z̄, v2〉
restricted to agents in Z and Z̄, respectively.

Preliminary observe that, for each pair of disjoint coalitions C ′, C ′′ ⊆ N , opt(C ′) +
opt(C ′′) ≥ opt(C ′∪C ′′) holds. Indeed, given any optimal allocation for the agents in C ′∪C ′′,
its restriction to C ′ is a feasible allocation for C ′, as well as its restriction to C ′′ is a feasible
allocation for C ′′. In particular, we have opt(Z) + opt(Z̄) ≥ opt(N) that, combined with the
hypothesis about the considered coalition Z, entails that opt(Z) + opt(Z̄) = opt(N). This
means that the values of the goods not used in any optimal allocation for Z̄ is equal to the sum



October 29, 2017 Journal of Experimental & Theoretical Artificial Intelligence jetai˙invited

of the values of the best goods for the agents in Z.
We shall show that, for each optimal allocation π for N , the set of goods S ⊆ Ω(Z) allocated

by π to Z is such that val(S) = opt(Z) and the analogous property holds for Z̄. Therefore,
these agents get the best goods they can obtain. To prove this claim, consider the value v =
val(S) ≤ opt(Z) and the value v̄ ≤ opt(Z̄). We know that opt(Z) + opt(N \ Z) = opt(N)
and, by the optimality of π, it holds v + v̄ = opt(N) too.

Consider now any coalitionC ⊆ N , and letCa = C∩Z andCb = C∩Z̄. Let π′ be an optimal
allocation for C. We claim that there is an optimal allocation πa mapping goods from S to Z
with valπa

(Ca) = valπ′(Ca), and an optimal allocation πb mapping goods not in S to Z̄ with
valπb

(Cb) = valπ′(Cb). Assume by contradiction that this is not the case. Then at least one of
those allocations leads to values smaller than those in π′ (note that π′ cannot be worse, because
the union of the two restricted allocations is a valid candidate mapping for C). Assume Ca gets
a smaller total value (the other case is symmetrical), that is, valπa

(Ca) < valπ′(Ca). Then,
there exists some agent i and a good p /∈ S so that p ∈ π′(i). By using Theorem 4.4 in (Greco
& Scarcello, 2014b), we can show that this would contradict the fact that val(S) = opt(Z).
In fact, goods such as p that are shared with agents outside Z and that allows us to get a better
value for the agents in Ca ⊆ Z, could be used to improve the choice of the available goods S
for the full set Z.

Now, given that it suffices to use only the goods in S for Z and the remaining goods for Z̄,
we can define an equivalent game in which the goods in S are of interest to agents in Z only and
the remaining to agents in Z̄ only. In the new game, Z and Z̄ are in fact sets of agents with no
shared connections and the theorem follows immediately from Theorem 4.1.

A very frequent and important case in applications, which falls in the case considered by this
latter property, occurs when C is a singleton {i}, and it happens that the optimal allocation for
this coalition is equal to the marginal contribution of i toN\{i}. By using the property described
above, the set i can be removed from the game and solved separately, so that we immediately
get φ(i) = opt({i}).

The following property identifies some goods that are useless for some agent i and thus can
be safely removed from its set of relevant goods Ω(i). Note that this operation does not affect
other agents possibly interested in such goods.

Fact 4.5 (Useless goods): Let i ∈ N be an agent, and let g ∈ Ω(i) be a good such that
val(g) + maxg′∈Ω(i)\{g} val(g′) < margi(N). Then, the modified allocation scenario where g
is removed from Ω(i) is equivalent to the original one, that is, the two scenarios have the same
associated game.

We conclude this section with a simple property that does not help to simplify the game, but
allows us to avoid the computation of unnecessary optimal allocations, during the computation
of marginal contributions.

Fact 4.6 (Disconnected agent): Let i ∈ N be an agent and let C ⊆ N be a component dis-
connected from i, that is, such that Ω(i) ∩ Ω(j) = ∅, for each j ∈ C. Then, opt({i} ∪ C) =
opt({i}) + opt(C) holds and the marginal contribution of i to C is opt({i}).

5. Lower and Upper Bounds for the Shapley Value

In this section we describe the computation of a lower bound and an upper bound for the Shapley
value of the allocation game GA = 〈N, vA〉 associated with any given allocation scenario A =
〈N,G,Ω, val, k〉.
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The availability of such bounds can be helpful to provide a more accurate estimation of the
approximation error in randomized algorithms. Moreover, whenever the two bounds coincide
for some agent, we clearly get the precise Shapley value for that agent. We shall see that this
often occurs in practice, in our case study.

Preliminarily observe that in allocation games we have for free a simple pair of bounds
from the anti-monotonicity property of these games: for each pair of coalitions C1 ⊆ C2,
margi(C2) ≤ margi(C1). Then, for each player i and for every coalition C ⊆ N \ {i}, we
have margi(N) ≤ margi(C) ≤ margi(∅) = opt({i}). It immediately follows that

margi(N) ≤ φi ≤ opt({i}).
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Figure 3.: Neighborhood configurations

In order to obtain tighter bounds, we observe that, given any coalition C and an agent i /∈ C,
the neighbors of i in the agents graph that belong to C have the higher influence on the marginal
contribution of i to C. Indeed, they are precisely those agents interested in using the goods of i
when he/she does not belong to the coalition. We already observed that, in the extreme case that
no neighbors are present, i contributes with all his/her best goods. The idea is to consider the
power-set of Neigh(i) as the only relevant sets of agents.

Let P ′ be a set of neighbors of i, let Z = Neigh(i) \ P ′, and let C = N \ (Neigh(i) ∪ {i}).
For the computation of the lower bound in Algorithm 1, for such a profile P ′ we compute the
marginal contribution of i to C ∪ P ′ (see Figure 3.a), but use this same value for the marginal
contributions of i to every coalition C ′ ⊆ N such that C ′ ∩ Neigh(i) = P ′, that is, for every
coalition with the same configuration P ′ of neighbors of i (Figure 3.b). Furthermore, we use a
suitable factor y to weigh this value in order to simulate that every such a coalition C ′ gets that
same marginal contribution from i.

The case of the upper bound is obtained in the dual way, by using instead the most favorable
case, i.e., by using the marginal contribution of i to P ′ (Figure 3.c) in place of the marginal
contribution of i to any coalition C ′ ⊆ N with C ′ ∩Neigh(i) = P ′ (Figure 3.d).

Theorem 5.1: Let (LB,UB) be the output of Algorithm 1. For each agent i ∈ N , LBi ≤
φ(i) ≤ UBi holds, and the computation of such values can be done in time O(2|Neigh(i)||N |3).

Proof. Let i be an agent of the game. As discussed above and depicted in Figure 3, the algorithm
is based on the computation of any possible combination P ′ of the neighbors of i. Regarding the
computation of the lower bound, for each such profile P ′, the algorithm considers a coalition
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Algorithm 1 Computing Bounds for the Shapley Value in Allocation Games
Input: An allocation game GA = 〈N, vA〉;
Output: A pair of vectors (LB,UB) encoding, respectively, a lower bound and an upper bound
of the Shapley value of GA;

1: for all i ∈ N do
2: P := Powerset(Neigh(i));
3: C := N \ (Neigh(i) ∪ {i});
4: l = |C|;
5: for all P ′ ∈ P do
6: Z := Neigh(i) \ P ′;
7: y =

∑l
k=0

(l−k+|P ′|)!·(|Z|+k)!
|N |! ·

(
l
k

)
;

8: LBi += y · (vA(C ∪ P ′ ∪ {i})− vA(C ∪ P ′));
9: UBi += y · (vA(P ′ ∪ {i})− vA(P ′));

10: end for
11: end for
12: return (LB,UB);

C ∪ P ′ obtained by completing P ′ with all the agents in N \ {i} that are not neighbors of i.
The algorithm uses the value of the marginal contribution of i to such coalition, that is, the

value margi(C ∪P ′) = vA(C ∪P ′ ∪ {i})− vA(C ∪P ′), in place of the marginal contributions
of i to each coalition C ′ ⊆ N such that C ′ ∩Neigh(i) = P ′. Now, because C ′ ⊆ C, by the anti-
monotonicity property of the marginal contributions in allocation games, we have margi(C) ≤
margi(C

′). Then, the algorithm weighs in a suitable way margi(C ∪ P ′) so that it is used in
place of the right marginal contribution of i to each coalition C ′ of the form described above. A
simple combinatorial argument shows that this can be achieved by multiplying margi(C ∪ P ′)
by the following factor

y =

l∑
k=0

(l − k + |P ′|)! · (|Z|+ k)!

|N |!
·
(
l

k

)
, (1)

where l = |N \ (Neigh(i) ∪ {i})| and Z = Neigh(i) \ P ′.
Regarding the computation of the upper bound of the Shapley value of i, we proceed in a sim-

ilar way, but using the marginal contribution of i to the profile P ′ containing only its neighbors,
instead of the marginal contributions to the various coalitionsC ′ ⊆ N such thatC ′∩Neigh(i) =
P ′. Indeed, in this case we have P ′ ⊆ C ′ and therefore margi(C

′) ≤ margi(P
′). Again, we need

to multiply such value by a factor which takes into account all possible ways of extending P ′ to
any coalition C ′ with the same profile of i’s neighbors. It is easy to see that we can again use the
factor y described above, by exploiting the fact that

(
l
k

)
=
(
l

l−k
)
.

Concerning the computational complexity, just observe that, for each element P ′ of the power
set of Neigh(i), we have to solve a constant number of optimal allocation problems. Each of
these problems requires the computation of an optimal weighted matching, which can be solved
in time O(|N |3).
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6. Approximating the Shapley Value

6.1. A Fully Polynomial-time Randomized Approximation Scheme

Recall that a coalitional game G = (N, v) is supermodular (Shapley, 1971) if

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ), whenever S ⊆ T and i /∈ T ;

in other words, the marginal contribution of player i to coalition S is not greater than i’s marginal
contribution to any larger coalition T ⊇ S. Moreover, it is said monotone if v(C) ≤ v(C ′)
whenever C ⊆ C ′.

Supermodular games have nice computational properties (see, e.g., Maschler, Peleg, & Shap-
ley, 1971; Kannai, 1992; Hatano & Yoshida, 2017). In particular, Liben-Nowell et al. (2012) have
shown that they have a Fully Polynomial-time Randomized Approximation Scheme (FPRAS):
for any ε > 0 and δ > 0, it is possible to compute in polynomial-time an ε−approximation of
the Shapley value of a monotone supermodular game with probability of failure at most δ.

Note that allocation games are not supermodular, however Greco and Scarcello (2014b)
proved that, for each allocation game G, there is a monotone supermodular game that is equiva-
lent to G with respect to the computation of the Shapley value. In particular, from the definition
of this equivalent game, it is straightforward to see that one can apply the FPRAS algorithm to
either game, obtaining the same approximation guarantees.

Recall that the FPRAS method by Liben-Nowell et al. (2012) is based on generating a certain
number of permutations (of all agents) and computing the marginal contribution of each agent to
the coalition of agents occurring before him/her in the considered permutation. Then the Shapley
value of each player is computed as the average of all such marginal contributions. The above
procedure is repeated O(log(1/δ)) times, in independent runs, with the result for each agent
consisting of the median of all computed values for him/her. Finally, the obtained values are
scaled (i.e., they are all multiplied by a common numerical factor) to ensure that the budget-
balance property is not violated.

Clearly enough, the more permutations are considered, the closer to the Shapley value the
result will be. We next report a slightly modified version of the basic procedure of this algorithm,
where we avoid the computation of some marginal contributions, if we can obtain the result by
using Fact 4.6.

As a preliminary step, we compute the required number of permutations m to meet the re-
quired error guarantee. In each of the m iterations, the algorithm generates a random permuta-
tion from the set of agentsN . We then iterate through this permutation and compute the marginal
contribution of each agent j to the set of agents C occurring before j in the permutation at hand.
If some neighbor of j (in the agents graph) occurs in C, the algorithm proceeds as usual by com-
puting the value of an optimal allocation for C ∪ {j} in order to obtain the value vA(C ∪ {j}).
Note that this one computation is indeed sufficient to get such a marginal contribution, because
the value opt(C) for the coalitionC including the preceding agents (for the permutation at hand)
is known from the previous step. Moreover, by Fact 4.6, we know that for those permutations
in which all the players in Neigh(j) follow j, the marginal contribution of j is just opt({j})
(see step 10). Finally, at steps 16–18 for each agent the algorithm divides the sum of his/her
contributions by the number of performed iterations m. The correctness of the whole algorithm
follows from Theorem 4 in (Liben-Nowell et al., 2012).
Computation Time Analysis. Let n = |N | be the number of agents, and let m be the required
number of iterations. The cost of the algorithm is O(m×n×margBlock), where margBlock
denotes the cost of computing each marginal contribution (steps 7–11). This requires the com-
putation of an optimal weighted matching in a bipartite graph, which is feasible in O(n3), via
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Algorithm 2 Shapley value approximation in allocation games
Input: An allocation game GA = 〈N, vA〉;
Parameters: Real numbers 0 < ε < 1 and 0 < δ < 1;
Output: A vector φ̃ that is an ε-approximation of the Shapley value of GA, with probability
1− δ;

1: m = |N |·(|N |−1)
δ·ε2 ;

2: i = 0;
3: while i < m do
4: shuffle(N);
5: C := {∅};
6: for all j ∈ N do
7: if Neigh(j) ∩ C 6= ∅ then
8: φ̃j += vA(C ∪ {j})− vA(C);
9: else

10: φ̃j += vA({j});
11: end if
12: C := C ∪ {j};
13: i = i+ 1;
14: end for
15: end while
16: for all j ∈ N do
17: φ̃j = φ̃j

m ;
18: end for
19: return φ̃;

the classical Hungarian algorithm (Kuhn & Yaw, 1955). However, if the current agent is dis-
connected from the rest of the coalition, the cost is given by a simple lookup in the cache where
the best allocation for each single agent is stored.

6.2. Sampling Algorithm When the Range of Marginal Contributions Is Known

Maleki et al. (2013) propose a bound on the number of samples (over the population of marginal
contributions) required to estimate an agent’s Shapley value, when the range of his/her contribu-
tions is known. Their bound is based on Hoeffding’s inequality (Hoeffding, 1963), and it states
that, in order to approximate the Shapley value of agent i within an absolute value ε, with failure
probability at most δi, that is, in order to get

Prob{|φ̃i − φi| ≥ ε} ≤ δi (2)

at least mi samples are required, where:

mi =

⌈
ln ( 2

δi
) · r2

i

2 · ε2

⌉
(3)

In the above expression, ri denotes the range of i’s marginal contributions (i.e., ri = opt({i})−
marg({i}, N)), where N is the set of all agents that partecipate in the allocation game). This
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bound allows us to determine the number of required random samples for each agent i, once ε
and δi are fixed. Assuming we want an overall failure probability δ, each agent i ∈ N could
be assigned a failure probability δi = δ/|N |. In principle a higher failure probability δi could
be tolerated for agents with larger ranges, at the expense of lower failure probability for agents
with smaller ranges. However, our experimental tests performed with this variant exhibited only
a few marginal gains.

Once the number of required samples for each agent is determined, the approximate Shapley
value, with the desired guarantees on the absolute error, can easily be computed by a randomized
algorithm evaluating the required samples of coalitions for each player (see Section 7.1 for a
brief description of our parallel implementation).

In order to consider the classical percentage expression for the approximation error, we should
replace ε by ε · φi in (2). First observe that φi 6= 0 for all agents i that are considered by the
algorithm, because our simplification techniques preliminarily identify and remove from the
game those agents having a null Shapley value (these agents must be interested only in goods
with a null value). In fact, the value of φi that would appear in (3) may be replaced by any
known (non-null) lower bound `i ≤ φi, at the expense of taking more samples than those strictly
necessary. On our largest test instance (namely, the researchers of Sapienza University of Rome
who participated in the research assessment exercise VQR2011-2014), the technique described
in Section 5 yields lower bounds that are greater that 0 for all agents. It turns out that, in a matter
of hours, we are able to get approximate Shapley values within 5% of the correct values.

It should be noted that the bound presented by Maleki et al. (2013), due to the exponential
relation it establishes between mi and δi, allowed us to compute good approximate Shapley
values at least for our test instances, where the range of the marginal contributions is fairly
limited, in a matter of hours. As a comparison, the FPRAS approach described in Section 6.1
would have taken a few years, instead of a few hours, to process our largest input instance with
the same error guarantees (see Section 7 for details on our experiments).

7. Implementation Details and Experimental Evaluation

7.1. Parallel Implementation of Shapley Value Algorithms

All the algorithms considered in this paper are amenable to parallel implementation. We engi-
neered our parallel implementations as follows.

FPRAS algorithm (Liben-Nowell et al., 2012). Besides the input allocation game, and the two
parameters δ and ε, we added a third parameter, the thread pool size. During the execution of the
algorithm, each thread (there are as many threads as the thread pool size dictates) is responsible
for generating a certain number of permutations according to the requested approximation factor
and, for each permutation, it computes the marginal contributions of all authors to that permu-
tation, and saves them in a local cache. Whenever a thread has generated its assigned number of
permutations, it delivers its local cache of computed scores to a synchronized output acceptor
(which increments the overall score of each author accordingly), and then shuts itself down as its
work is completed. When all threads have shut down, each entry of the acceptor’s output vector
is averaged over the total number of permutations, yielding the final approximate Shapley vector
for that run. The above procedure is repeated for each independent run. When all runs are done,
the component-wise median of all final approximate Shapley vectors is computed, and the re-
sulting vector is scaled (i.e., all entries are multiplied by a number such that the budget-balance
property is enforced), yielding the desired approximation with the desired probability.

Algorithm based on the ranges of samples (Maleki et al., 2013). As a preliminary step, the
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number of required samples for each author i is determined by a sequential routine (as this
computation is very fast), based on the approximation parameters δ and ε, and on precomputed
values for opt({i}), marg({i}, N), where N is the set of all authors, and LBi. The algorithm
also receives two extra parameters, threadPoolSize and batchSize. Subsequently, each thread
(the total number of threads is determined by threadPoolSize) asks a synchronized producer
for a job (i.e., a pair (i, numSamples)). The synchronized producer either provides a job for
the requesting thread, or it returns null, if enough jobs have already been distributed to sat-
isfy the approximation requirements. Upon receiving a job, a thread produces numSamples
uniformely distributed random subsets of N \ {i}, and for each such subset S, computes the
marginal contribution of i to S. The sum of these contributions is delivered to a synchronized
output acceptor, which stores, for each author, the sum of all marginal contributions computed
so far by the various threads. Notice that the job provider will always distribute pairs for which
numSamples ≤ batchSize. This is done to ensure, with proper tuning of parameter batchSize,
load balancing between the threads. Finally, when a thread receives null from the synchronized
job provider, it simply shuts itself down, as there is no more work to do. When all threads have
shut down, the output acceptor will average the sum of all marginal contributions of each author
over the number of required samples for that author, yielding the approximate Shapley value.

Exact algorithm. In our exact algorithm implementation, each thread (the total number of threads
is specified by an input parameter) asks a synchronized producer for a subset of authors to work
with. The synchronized subset producer either provides an n-bit integer number (where n is the
number of authors) for the requesting thread, or it returns null if all 2n subsets have already been
delivered for elaboration. Upon receiving an n-bit integer from the subset provider, a thread
turns it into a subset of authors (if a bit is set to 1, then the corresponding author is included in
the subset), and computes partial scores for all authors in the subset, storing the values obtained
in a local cache. When a thread receives null from the subset provider, it delivers its local cache
of computed scores to a synchronized output acceptor (which increments the overall score of
each author accordingly), and then shuts itself down, as it has no more work to do. When all
threads have shut down, the output vector will contain the exact Shapley values for all authors.

7.2. Experimental Results

Hardware and software configuration. Experiments have been performed on two dedicated ma-
chines. In particular, sequential implementations were run on a machine with an Intel Core
i7-3770k 3.5 GHz processor, 12 GB (DDR3 1600 MHz) of RAM, and operating system Linux
Debian Jessie. We tested the parallel implementations on a machine equipped with two Intel
Xeon E5-4610 v2 @ 2.30GHz with 8 cores and 16 logical processors each, for a total of 32 logi-
cal processors, 128 GB of RAM, and operating system Linux Debian Wheezy. Algorithms were
implemented in Java, and the code was executed on the JDK 1.8.0 05-b13, for the Intel Core i7
machine, and on the OpenJDK Runtime Environment (IcedTea 2.6.7) (7u111-2.6.7-1 deb7u1),
for the Intel Xeon machine.

Dataset description. We applied the algorithms to the computation of a fair division of the scores
for the researchers of Sapienza University of Rome who participated in the research assessment
exercise VQR2011-2014. Sapienza contributors to the exercise were 3562 and almost all of them
were required to submit 2 publications for review. We computed the scores of each publication
by applying, when available, the bibliographic assessment tables provided by ANVUR.

Preprocessing. The analysis was carried out by preliminarily simplifying the input using the
properties discussed in Section 4, as explained next.

Starting with a setting comprising 3562 researchers and 5909 publications, first we removed
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Figure 4.: Methods comparison (n = 15).

researchers having no publications for review. After this step a total of 370 authors were re-
moved. Then, by exploiting the simplification described in Fact 4.3, we removed 2323 publica-
tions. By using Theorem 4.4, the graph was subsequently filtered removing each author whose
marginal contribution to the grand coalition coincided with the optimal allocation restricted to
the author himself. After this step 2427 researchers out of 3562 were removed. Then we divided
the resulting agents graph into connected components obtaining a total number of 156 con-
nected components and we discovered only two components consisting of more than 10 agents.
The sizes of these components were 691 and 15. These components were further simplified by
using Fact 4.5. After the whole preprocessing phase, we obtained a total of 159 connected com-
ponents with the largest one having 685 nodes. The size of the second largest component was 15,
while all the others remained very small (less than 10 nodes). In the rest of the section, we shall
illustrate results of experimental activity conducted over the various methods. To this end, we fix
the value δ = 0.01. This value has been chosen heuristically, based on a series of tests conducted
on various CUN Areas of Sapienza, where CUN Areas are (large) scientific disciplines such as
Math and Computer Science (Area 01) or Physics (Area 02).

Tests with components of variable size. As already pointed out, after the preprocessing step we
obtained very small connected components (less than 10 nodes) except for the largest two (685
and 15 nodes, respectively). For all components with less than 10 nodes, the exact algorithm, of
which we used a sequential implementation for these tests, performs very well (a few millisec-
onds), therefore we omit the analysis here. In order to test all the other algorithms, besides the
two largest components, we randomly extracted samples of (distinct) nodes out of the original
graph, to produce different subgraphs with size n ∈ {23, 26, 30, 40}.

For the considered cases, we do not find significant differences among the values obtained by
using the two approximation algorithms and the exact ones (see, e.g., figures 4 and 5, in which
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Figure 5.: Methods comparison (n = 40).

the approximation algorithms were required to produce results within 5% of the exact value5).
Notably, with the exception of a small number of cases, our bounds (especially the lower bounds)
are always very close to the exact value. In particular, for n = 26 we were able to immediately
get the Shapley value for all agents, since upper and lower bounds coincide for all of them.

We also evaluated how many computations of optimal allocations were avoided in the FPRAS
of Liben-Nowell et al., by exploiting Fact 4.6 (and hence executing in the latter case Step 10
rather than Step 8 in Algorithm 2). By fixing the approximation error at ε = 0.3, for each
n ∈ {15, 23, 26, 30, 40} we get the following savings: 9.65 · 105 out of 3.5 · 106 (i.e., 28%),
2.34 · 106 out of 1.29 · 107 (18%), 5.36 · 106 out of 1.87 · 107 (29%), 8.78 · 106 out of 2.9 · 107

(30%), and 1.46 · 107 out of 6.93 · 107 (21%), respectively.
As already pointed out, the FPRAS method performed much better than its theoretical guaran-

tee on the maximum approximation error. We report the real maximum and average approxima-
tion errors (denoted by X and Y, respectively) of our implementation w.r.t. the exact algorithm
for each n ∈ {15, 23, 26}, with ε = 0.3. For n = 15, we get X = 0.01 and Y = 3 · 10−3, for
n = 23 we get X = 1.5 · 10−3 and Y = 1.7 · 10−4, and for n = 26 we get X = 1.06 · 10−4 and Y
= 1.59 · 10−5. In all cases, the maximum approximation error was about 1% (or less) and there-
fore considerably below the theoretical guarantee (30%). The algorithm based on the bound of
Maleki et al. also performs better than its theoretical guarantee, though not by as wide a margin
as the FPRAS method (it is, however, much faster, as we will see in the next paragraph). In this
case, for n = 15 we get X = 0.093 and Y = 0.046, for n = 23 we get X = 0.098 and Y = 0.011,
and for n = 26 we get X = 0.097 and Y = 0.019. In all cases, the maximum approximation error
was below 10%, and therefore quite smaller than the required threshold.

Running Times. Figures 6, 7 and 8 report the computation times of the various algorithms. In

5In these two figures the values obtained by FPRAS are not visible because they coincide with the exact values.
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Figure 6.: Sequential implementations: running times for the computation of the exact value by
using the brute-force algorithm (green), and of the upper and lower bounds (blue) vs instance
size.

particular, Figure 6 focuses on the sequential implementations of the brute-force algorithm for
computing the exact values, and of the algorithms for computing the upper and lower bounds.
For the experiments, we computed separately the two bounds in order to point out that the
computation of the lower bound requires in general more time, because it considers allocation
over larger coalitions than those considered for the computation of the upper bound. Moreover,
as discussed in Section 5, the running times for computing the bounds heavily depend on the
cardinality of the agents’ neighborhoods. This explains why the running times for the case n =
50 are smaller than those for the case n = 40.

Figure 7 shows the running time of the parallel implementation of the FPRAS method, us-
ing 24 threads, for different values of ε. In particular, we performed five trials over the different
(sub)games described above, and report averaged measures. We can see that for games of reason-
able size we can achieve a high theoretical approximation error guarantee. For instance, for the
largest considered game (n = 50) we were able to compute the approximate Shapley value with
ε = 0.1 in less than 90 minutes. There is a wide gap between the running times of the FPRAS
method, when using the highest and lowest values we considered for the allowed approximation
error. However, as already pointed out, even when we used a poor theoretical guarantee on the
approximation error, we still obtained a quite reasonable accuracy.

In spite of its excellent accuracy, and its high efficiency when compared to the exact algorithm,
we estimated that our parallel implementation of the FPRAS method would have taken, with ε =
0.05 and 24 threads, roughly 3.33 years to fully analyze the largest component of our Sapienza
test case, comprising 685 authors. By contrast, the parallel implementation of the algorithm
based on the bound proposed by Maleki et al., with the same settings, took only 11.75 hours.
The bound on the number of samples proposed by Maleki et al. requires the knowledge of the
range of the marginal contributions, which was computed in less than 3 minutes. Moreover,
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in order to guarantee that the results are within a certain percentage of the correct values, the
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lower bounds for the Shapley value are also required. For the largest component of our test
instance, we computed the lower bounds for the 681 authors with neighborhood size up to 19;
for the few remaining authors with more neighbors (just 4 authors), we used as lower bound
the marginal contribution to the grand coalition. Multithreaded computation of the lower bounds
took approximately 160 hours.

It should be noted that the bound by Maleki et al. can also be applied directly to the largest CC
in the unsimplified Sapienza VQR graph. This CC comprises 1176 authors. In this case, straight-
forward application of the bound for all authors required, on our server, with 24 threads and an
absolute error εabs = 5, roughly 20.5 hours. If we set εabs = 1, the computation time increases
to approximately 31 days. Figure 8 shows the running times of the parallel implementation of
Maleki-based algorithm on the two largest CCs in our test instances, with varying values of εabs.

8. Conclusions and Future Work

In this paper, we have identified useful properties that allow us to decompose large instances of
allocation problems into smaller and simpler ones, in order to be able to compute the Shapley
value. The proposed techniques greatly improve the applicability to real-world problems of the
approximation algorithms described in the literature. Furthermore, we described an algorithm
for the computation of an upper bound and a lower bound for the Shapley value. These bounds
provide a more accurate estimate of approximation errors, and (often, in our case study) yield
the exact Shapley value for those agents where upper and lower bounds coincide.

We have engineered parallel implementations of the considered algorithms, and we have tested
them on a real-world problem, namely, the 2011-2014 Italian research assessment program
(known as VQR), modeled as an allocation game. With the proposed tools, we have been able
to compute, either exactly, or within a fairly good approximation (5% of the correct value with
99% probability) the Shapley value for all agents in our largest test instance, namely, Sapienza
University of Rome, comprising 3562 researchers and 5909 research products.

As future work, we would like to extend the structure-based technique described in (Greco
et al., 2015) to the more general class of games where more than one good can be allocated to
each agent (as it is the case in VQR allocations). In this way, we could compute efficiently
the exact Shapley value for large games, provided that the treewidth of the agents graph is
small. With this respect, we note that this is not the case for the large Sapienza VQR instance
for which, after the simplification performed with the tools described in the paper, we are left
with a large component whose estimated treewidth is 64. This is too much for using structure-
based decomposition techniques. However, for the sake of completeness, we note that all other
components have a low treewidth. For instance, the component with 50 agents used in our tests
has treewidth 5.

Finally, we would like to obtain tighter lower and upper bounds, possibly with a computational
effort that can be tuned to meet given time constraints.
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