We prove that the Morse index of any radial solution with m nodal domains of the Lane-Emden problem in the unit ball of R^N, N>2, is m + N(m − 1), if the exponent p is sufficiently close to the critical Sobolev exponent.

A Morse index formula for radial solutions of Lane-Emden problems / De Marchis, Francesca; Ianni, Isabella; Pacella, Filomena. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 322:(2017), pp. 682-737. [10.1016/j.aim.2017.10.026]

A Morse index formula for radial solutions of Lane-Emden problems

De Marchis, Francesca;Ianni, Isabella;Pacella, Filomena
2017

Abstract

We prove that the Morse index of any radial solution with m nodal domains of the Lane-Emden problem in the unit ball of R^N, N>2, is m + N(m − 1), if the exponent p is sufficiently close to the critical Sobolev exponent.
2017
asymptotic analysis; critical and subcritical superlinear elliptic boundary value problem; Morse index; sign-changing radial solution
01 Pubblicazione su rivista::01a Articolo in rivista
A Morse index formula for radial solutions of Lane-Emden problems / De Marchis, Francesca; Ianni, Isabella; Pacella, Filomena. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 322:(2017), pp. 682-737. [10.1016/j.aim.2017.10.026]
File allegati a questo prodotto
File Dimensione Formato  
DeMarchis_A-Morse-index_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 703.07 kB
Formato Adobe PDF
703.07 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1085828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 23
social impact