We prove upper and lower bounds on the effective content and logical strength for a variety of natural restrictions of Hindman’s Finite Sums Theorem. For example, we show that Hindman’s Theorem for sums of length at most 2 and 4 colors implies ACA 0 . An emerging leitmotiv is that the known lower bounds for Hindman’s Theorem and for its restriction to sums of at most 2 elements are already valid for a number of restricted versions which have simple proofs and better computability- and proof-theoretic upper bounds than the known upper bound for the full version of the theorem. We highlight the role of a sparsity-like condition on the solution set, which we call apartness.

New bounds on the strength of some restrictions of Hindman’s Theorem / Carlucci, Lorenzo; Aleksander Kolodziejczyk, Leszek; Lepore, Francesco; Zdanowski, Konrad. - STAMPA. - (2017), pp. 210-220. (Intervento presentato al convegno 13th Conference on Computability in Europe, CiE 2017 tenutosi a Turku, Finland nel Giugno 2017) [10.1007/978-3-319-58741-7].

New bounds on the strength of some restrictions of Hindman’s Theorem

Lorenzo Carlucci
;
2017

Abstract

We prove upper and lower bounds on the effective content and logical strength for a variety of natural restrictions of Hindman’s Finite Sums Theorem. For example, we show that Hindman’s Theorem for sums of length at most 2 and 4 colors implies ACA 0 . An emerging leitmotiv is that the known lower bounds for Hindman’s Theorem and for its restriction to sums of at most 2 elements are already valid for a number of restricted versions which have simple proofs and better computability- and proof-theoretic upper bounds than the known upper bound for the full version of the theorem. We highlight the role of a sparsity-like condition on the solution set, which we call apartness.
2017
13th Conference on Computability in Europe, CiE 2017
Reverse mathematics; Ramsey's theorem; Theorem
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
New bounds on the strength of some restrictions of Hindman’s Theorem / Carlucci, Lorenzo; Aleksander Kolodziejczyk, Leszek; Lepore, Francesco; Zdanowski, Konrad. - STAMPA. - (2017), pp. 210-220. (Intervento presentato al convegno 13th Conference on Computability in Europe, CiE 2017 tenutosi a Turku, Finland nel Giugno 2017) [10.1007/978-3-319-58741-7].
File allegati a questo prodotto
File Dimensione Formato  
Carlucci_New_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 393.83 kB
Formato Adobe PDF
393.83 kB Adobe PDF
Carlucci_NewBound_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 254.93 kB
Formato Adobe PDF
254.93 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1064314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact