The energetics of hohlraum targets for inertial fusion are studied by means of one-dimensional radiation hydrodynamics simulations, assuming that a pulse of thermal X-rays with a simple time shape is fed into the cavity. A fusion yield Efus = 160–250 MJ is released by a capsule with fuel mass mDT = 3.3 mg, driven by a two-step pulse. The required input energy is Ex ≈ 3.4 MJ for a hohlraum area ratio a = 9 and 6.6 MJ for a = 20, corresponding to gains of Gx = Efus/Ex = 50–73 and 25–35 respectively. Higher gains are obtained by three-step pulses. Targets with mDT = 0.4 mg require better-shaped pulses, with at least three steps. Driven by Ex = 0.85−1.7 MJ, they release Efus = 8–10 MJ. Symmetry aspects of axially symmetric hohlraums driven by heavy ion beams are studied by a viewfactor code, employing wall motion and re-emissivities provided by the one-dimensional hydro-simulations. The dependence of the capsule irradiation asymmetry on the hohlraum aspect ratio, area ratio and fill density is analyzed. Reductions of wall motion and converter expansion, and the use of shields appear necessary to allow for the use of a moderate area ratio a ≈ 10–15.

Energetics and Symmetry of Hohlraum Targets Driven by Ion Beam Pulses with Simple Time Shape / Atzeni, Stefano; M., Temporal. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - STAMPA. - 32-33:(1996), pp. 595-601. (Intervento presentato al convegno Seventh International Symposium on Heavy Ion Inertial Fusion tenutosi a Princeton, NJ, USA nel 6–9 September 1995) [10.1016/S0920-3796(96)00520-0 ].

Energetics and Symmetry of Hohlraum Targets Driven by Ion Beam Pulses with Simple Time Shape

ATZENI, Stefano;
1996

Abstract

The energetics of hohlraum targets for inertial fusion are studied by means of one-dimensional radiation hydrodynamics simulations, assuming that a pulse of thermal X-rays with a simple time shape is fed into the cavity. A fusion yield Efus = 160–250 MJ is released by a capsule with fuel mass mDT = 3.3 mg, driven by a two-step pulse. The required input energy is Ex ≈ 3.4 MJ for a hohlraum area ratio a = 9 and 6.6 MJ for a = 20, corresponding to gains of Gx = Efus/Ex = 50–73 and 25–35 respectively. Higher gains are obtained by three-step pulses. Targets with mDT = 0.4 mg require better-shaped pulses, with at least three steps. Driven by Ex = 0.85−1.7 MJ, they release Efus = 8–10 MJ. Symmetry aspects of axially symmetric hohlraums driven by heavy ion beams are studied by a viewfactor code, employing wall motion and re-emissivities provided by the one-dimensional hydro-simulations. The dependence of the capsule irradiation asymmetry on the hohlraum aspect ratio, area ratio and fill density is analyzed. Reductions of wall motion and converter expansion, and the use of shields appear necessary to allow for the use of a moderate area ratio a ≈ 10–15.
1996
Seventh International Symposium on Heavy Ion Inertial Fusion
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Energetics and Symmetry of Hohlraum Targets Driven by Ion Beam Pulses with Simple Time Shape / Atzeni, Stefano; M., Temporal. - In: FUSION ENGINEERING AND DESIGN. - ISSN 0920-3796. - STAMPA. - 32-33:(1996), pp. 595-601. (Intervento presentato al convegno Seventh International Symposium on Heavy Ion Inertial Fusion tenutosi a Princeton, NJ, USA nel 6–9 September 1995) [10.1016/S0920-3796(96)00520-0 ].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/104912
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact