We prove some existence results for the following Schrodinger-Maxwell system of elliptic equations: {-div(M(x)del u) + A phi vertical bar u vertical bar(r-2) u = f, u is an element of W-0(1,2) (Omega), -div(M(x)del phi) = vertical bar u vertical bar(r), phi is an element of W-0(1,2) (Omega). In particular, we prove the existence of a finite energy solution (u, phi) if r > 2* and f does not belong to the "dual space" L2N/N+2 (Omega).
Regularizing effect for a system of Schrödinger-Maxwell equations / Boccardo, Lucio; Orsina, Luigi. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8258. - STAMPA. - 11:1(2018), pp. 75-87. [10.1515/acv-2016-0006]
Regularizing effect for a system of Schrödinger-Maxwell equations
Boccardo, Lucio
;Orsina, Luigi
2018
Abstract
We prove some existence results for the following Schrodinger-Maxwell system of elliptic equations: {-div(M(x)del u) + A phi vertical bar u vertical bar(r-2) u = f, u is an element of W-0(1,2) (Omega), -div(M(x)del phi) = vertical bar u vertical bar(r), phi is an element of W-0(1,2) (Omega). In particular, we prove the existence of a finite energy solution (u, phi) if r > 2* and f does not belong to the "dual space" L2N/N+2 (Omega).File | Dimensione | Formato | |
---|---|---|---|
Boccardo_Regularizing_2018.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
648.08 kB
Formato
Adobe PDF
|
648.08 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.