Steiner's tube formula states that the volume of an ∈-neighborhood of a smooth regular domain in ℝn is a polynomial of degree n in the variable ∈ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ∈-neighborhood with respect to the Heisenberg metric is an analytic function of ∈ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.

Steiner's formula in the Heisenberg group / Balogh, Zoltán M.; Ferrari, Fausto; Franchi, Bruno; Vecchi, Eugenio; Wildrick, Kevin. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 126:(2015), pp. 201-217. [10.1016/j.na.2015.05.006]

Steiner's formula in the Heisenberg group

FERRARI, FAUSTO;Vecchi, Eugenio;
2015

Abstract

Steiner's tube formula states that the volume of an ∈-neighborhood of a smooth regular domain in ℝn is a polynomial of degree n in the variable ∈ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ∈-neighborhood with respect to the Heisenberg metric is an analytic function of ∈ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.
2015
Heisenberg group; Steiner's formula;
01 Pubblicazione su rivista::01a Articolo in rivista
Steiner's formula in the Heisenberg group / Balogh, Zoltán M.; Ferrari, Fausto; Franchi, Bruno; Vecchi, Eugenio; Wildrick, Kevin. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - 126:(2015), pp. 201-217. [10.1016/j.na.2015.05.006]
File allegati a questo prodotto
File Dimensione Formato  
Balogh_Steiners-formula_2015.pdf

Open Access dal 01/01/2020

Note: https://www.sciencedirect.com/science/article/pii/S0362546X15001571
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 312.31 kB
Formato Adobe PDF
312.31 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1047314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact