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Abstract. Steiner’s tube formula states that the volume of an ε -neighborhood of a smooth regular
domain in Rn is a polynomial of degree n in the variable ε whose coefficients are curvature integrals

(also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the

first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ε-
neighborhood with respect to the Heisenberg metric is an analytic function of ε that is generally
not a polynomial. The coefficients of the series expansion can be explicitly written in terms of
integrals of iteratively defined canonical polynomials of just five curvature terms.
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1. Introduction

Let us denote by Ω ⊆ Rn a bounded regular domain in Euclidean space, and by Ωε its ε neigh-
borhood with respect to the usual Euclidean metric. The celebrated Steiner’s formula expresses
the volume vol(Ωε) as a polynomial in ε

(1.1) vol(Ωε) =

n∑
k=0

akε
k,

where the coefficients ak are the so called quermassintegrals of Ω.

This formula goes back to J. Steiner who proved it in two and three dimensional Euclidean
spaces for convex polytopes. It was later generalized by H. Weyl to the setting of arbitrary smooth
submanifolds of Rn. We refer the interested reader to the monograph of A. Gray [15] for an

exhaustive overview of this subject, as well as [6]. A localized version of the above formula also

holds for a large class of non-smooth submanifolds, as shown by H. Federer [9]. Recently these
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notions have been widely used to obtain new results concerning nonlinear PDEs and Sobolev
inequalities, see e.g. [24], [19] and [12], and relative isoperimetric inequalities, see [11].

The purpose of this paper is to prove a similar result the setting of the sub-Riemannian Heisenberg
group H. We endow H with its canonical left-invariant Carnot-Carathéodory metric, and search
for a formula akin to (1.1) with the ε-neighborhood Ωε replaced by an ε-neighborhood with respect
to the Carnot-Carathéodory metric. Basic notation and results about the metric structure of the
Heisenberg group are given in Section 2. This endeavor is motivated by the recent progress in the
geometric measure theory of Lie groups (e.g., [7, 17, 13, 1, 2, 16]). In the aforementioned papers,
many tools of the Euclidean theory related to rectifiability and perimeter, such as co-area and
divergence formulae, have been developed in the sub-Riemannian setting of non-commutative Lie
groups. Nevertheless, the notions of higher order curvatures even in the simplest instance of H are
still far from being fully understood. We hope this paper can provide some hints in this direction.
For a general overview of these results we refer to the monograph [5].

Our approach is inspired by the work of R.C. Reilly [20], [21]. We will express the coefficients ak
in Steiner’s formula in terms of integrals of iterated divergences of the signed Carnot-Carathéodory
distance function δ associated to Ω.

In our setting of the first Heisenberg group, instead of the full divergence, we consider the so-
called horizontal divergence of a horizontal vector field X = u1X1 +u2X2 where X1 and X2 are the
canonical left-invariant horizontal vector fields in H and u1 and u2 are arbitrary smooth functions.
In this situation, the horizontal divergence of X is given by divHX := X1u1+X2u2. If u is a smooth
function in an open set of H we shall consider the iterated horizontal divergences of u according to
the relations:

divH
(0)∇Hu = 1, divH

(i)∇Hu = divH

(
(divH

(i−1)∇Hu) · ∇Hu
)
, i ≥ 1,

where ∇Hu := (X1u)X1 + (X2u)X2 is the horizontal gradient of u.

Our first statement gives a power series expansion for the volume of a localized metric neighbor-
hood of a bounded smooth domain in the Heisenberg group, away from characteristic points. For
the precise form of this localization, see Section 3.1.

Theorem 1.1. Let Ω ⊆ H be a bounded smooth domain with C∞-regular boundary and Q ⊆ H be
a localizing set with the property that ∂Ω∩Q is free from characteristic points. We denote by δ the
signed Carnot-Carathédory distance function defined in a neighborhood of ∂Ω ∩Q.

For ε ≥ 0, let Ωε ∩ Q be a localized Heisenberg ε-neighborhood of Ω. Then there is an ε0 > 0
such that the function ε 7→ vol(Ωε ∩ Q) is analytic on the interval [0, ε0) and has a power series
expansion given by

vol(Ωε ∩Q) = vol(Ω ∩Q) +

∞∑
i=1

ai
εi

i!
,

where

ai =

∫
∂Ω∩Q

(divH
(i−1)∇Hδ) dH3

dcc .

The remarkable fact is that, although the (i−1)st iterated divergence, i > 1, of a smooth function
u contains, a priori, derivatives of order i, for the signed distance function δ this is not the case. It
turns out that all coefficients ai appearing in Theorem 1.1 are integrals of polynomials of certain
second order derivatives of the function δ.

Let us denote by X3 the canonical left-invariant vertical vector field in H. To simplify the
notation for iterated applications of the vector fields Xi, i = 1, 2, 3 we will denote Xi(Xj) by Xij .



STEINER’S FORMULA IN THE HEISENBERG GROUP 3

The main result of our paper gives a precise recursive formula for the iterated divergences in
terms of the following quantities:

A := ∆Hδ := X11δ +X22δ, B := −(4X3δ)
2, C := −4 ((X1δ)(X32δ)− (X2δ)(X31δ)) ,

D := 16X33δ, E := 16
(
(X31δ)

2 + (X32δ)
2
)
.

Theorem 1.2. Under the conditions of Theorem 1.1, the following relations hold:

divH
(1)∇Hδ = A, divH

(2)∇Hδ = B + 2C,

divH
(3)∇Hδ = AB + 2D, divH

(4)∇Hδ = B2 + 2BC + 2AD − 2E,

and for all j ≥ 2,

divH
(2j−1)∇Hδ = Bj−2 (AB + 2(j − 1)D) ,(1.2)

divH
(2j)∇Hδ = Bj−2

(
B2 + 2BC + 2(j − 1)(AD − E)

)
.(1.3)

Generally speaking, it is feasible to think that the integrals of iterated horizontal divergences ap-
pearing in the above expressions should carry important geometric information about the Heisenberg
geometry of the domain Ω. In particular the expression

divH
(1)∇Hδ = ∆Hδ := X11δ +X22δ

is currently the accepted notion of the horizontal mean curvature of ∂Ω, and indeed of the level
sets {δ = ε} for sufficiently small values of ε [1]. This notion of mean curvature plays a crucial role
in the study of minimal surfaces in the Heisenberg group.

Analogously, the expression

divH
(2)∇Hδ = −(4X3δ)

2 − 8 ((X1δ)(X32δ)− (X2δ)(X31δ))

may provide a useful notion of the Gaussian curvature of a surface in the Heisenberg group. While
the above expression has not yet been investigated in depth, recent results [4], indicate however
that this formula comes out as the limit of the sectional curvature of a surface in the Riemannian
approximation of the Heisenberg group and gives an appropriate version of the Gauss-Bonnet
theorem in the Heisenberg setting.

Some further information about the existing literature is now in order. By homogeneity, it is
easy to prove that Steiner’s formula for a Carnot-Carathéodory ball in the Heisenberg group is
a polynomial of degree 4. In [10], the coefficients of this polynomial have been explicitly found,
computing the flow of the horizontal gradient of the signed distance function. A track of this flow
is called a metric normal, the theory of which has been developed in [1], [2]. While this approach
does not relate the iterated divergences to volume nor allow for localization, it is very effective in
computing the volume function for explicit sets.

The paper is structured as follows. In Section 2 we establish notation and recall background
results on the metric geometry of the Heisenberg group. Section 3 is devoted to the definition of
localizing sets and to the relationship of the derivatives of the volume function to the integrals of
the iterated divergences. In Section 4 we prove the recursive formulae stated in Theorem 1.2 and
conclude the proof of Theorem 1.1. In Section 5 we present an example in which the coefficients in
Theorem 1.1 can be computed explicitly although the volume function is not a polynomial.

Acknowledgments. We thank the referee for carefully reading the paper and for the useful
comments and suggestions to improve the paper.
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2. Notation and basic results

Given points x = (x1, x2, x3) and x′ = (x′1, x
′
2, x
′
3) in R3, the Heisenberg product is given by

x ∗ x′ = (x1 + x′1, x2 + x′2, x3 + x′3 + 2(x2x
′
1 − x1x

′
2),

defining the Heisenberg group H. The corresponding Lie algebra is generated by the left-invariant
vector fields

X1 =
∂

∂x1
+ 2x2

∂

∂x3
, X2 =

∂

∂x2
− 2x1

∂

∂x3
, X3 =

∂

∂x3
.

We employ this somewhat unusual notation for the readability of the computations to be made in
Section 4.

The horizontal distribution

HH := span{X1, X2} ⊆ TR3

is equipped with the inner product 〈·, ·〉H in which X1 and X2 form an orthonormal basis. This

induces the horizontal norm || · ||H.

Since [X1, X2] = −4X3, the horizontal distribution HH is non-integrable. It follows that any

pair of points x, x′ ∈ H can be connected by an absolutely continuous curve γ : [0, 1]→ R3 with the

property that γ′(s) ∈ Hγ(s)H for almost every s ∈ [0, 1]; such a curve is called horizontal. Measuring

the length of horizontal curves by using || · ||H results in the Carnot-Carathéodory metric on H,
which is denoted

dcc(x, x
′) := inf

{∫
γ
||γ′(s)||H ds : γ is a horizontal curve connecting x to x′

}
.

The Haar measure on H, the 3-dimensional Lebesgue measure L3, and the 4-dimensional Hausdorff

measure H4
dcc

of the metric dcc all coincide up when appropriately normalized. We will most often

employ the Lebesgue measure as our notion of volume in H.
Throughout this paper, we will work with the following standing assumptions and notations:

(1) We consider a fixed but arbitrary open set Ω ⊆ R3 whose boundary ∂Ω is a C∞-smooth
surface.

(2) The signed distance of a point g ∈ H from ∂Ω is denoted by δ : H→ [0,∞), where

(2.1) δ(g) =

{
distcc(g, ∂Ω) g ∈ H \ Ω,

−distcc(g, ∂Ω) g ∈ Ω̄.

(3) The characteristic set of ∂Ω is defined by

char(∂Ω) = {g ∈ ∂Ω : Tg∂Ω = HgH} .

This set is pathological from the perspective of the regularity of the distance function δ.
We consider an arbitrary bounded, connected, and relatively open set U0 ⊆ ∂Ω with the
property that

distcc(U0, char(∂Ω)) > 0.

A result of [1] implies that there is a connected, bounded, and open set U ⊆ R3 that contains

U0 and on which δ has one degree of regularity less than the degree of regularity of ∂Ω.
Hence, it follows that δ is C∞-smooth on U , and that the level sets of δ are C∞-smooth near
any point of U .

(4) The Euclidean gradient field ∇δ : U → R3 is non-vanishing and normal (in the Euclidean

sense) to the level set δ−1(ε) near any point of U . The projection of this vector field onto
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the horizontal distribution HH yields the embedded horizontal normal N : U → R3 defined
by

N = (X1δ)X1 + (X2δ)X2,

The basis of this work is the fact that the signed distance function satisfies the eikonal
equation in the following sense (see [17]):

(2.2) ‖N(g)‖H = 1, for L3-almost every g ∈ U .

In fact, the smoothness of δ implies that N is also C∞-smooth, and so (2.2) holds everywhere
on U .

(5) Given a differentiable function α : U → R, we define the horizontal gradient of α to
be the projection of the Euclidean gradient of α onto the horizontal distribution, i.e.,

∇Hα : U → R3 is given by

∇Hα = (X1α)X1 + (X2α)X2.

Note that we have defined ∇Hα to be a vector field in R3, and not as the two-dimensional

vector field (X1α,X2α) : U → R2, as is often the case. In particular, N = ∇Hδ. We will
use both notations to denote this object: N will be employed when its role is geometric in
nature, and ∇Hδ will be employed when its role is more analytic in nature.

(6) Let V = aX1 + bX2 : U → R3 be a differentiable vector field with values in the horizontal
distribution. A key role in this paper is played by the horizontal divergence of V , which is
defined by

divH V = X1a+X2b.

3. The derivatives of the volume function

3.1. The construction and properties of the localizing set Q. If Ω is unbounded, the volume
of its Heisenberg ε-neighborhood is infinite. To avoid this, and to avoid characteristic points, we

consider a localized version of the volume function. In the setting of R3, this can be done as follows

(see [9]). One assumes that Ω has positive reach, meaning that there is a number r > 0 such that

if distR3(x,Ω) < r, then there is a unique point πΩ(x) ∈ Ω of minimal distance to x. For each

bounded Borel subset Q ⊆ R3 and ε ∈ [0, r), one considers the set

T (Q,Ω, ε) = {x ∈ R3 : distR3(x,Ω) ≤ ε and πΩ(x) ∈ Q}

and seeks a Taylor series expansion of the function

ε 7→ L3(T (Q,Ω, ε))

at ε = 0.
The requirement that Ω have positive reach is far weaker than our assumptions on Ω. Since

we have assumed that ∂Ω is C∞-smooth, we may view the set T (Q,Ω, ε) above as the union of

Ω ∩Q and the tracks of ∂Ω ∩Q under the gradient flow of the Euclidean distance-to-∂Ω function
distR3(·, ∂Ω) for time ε. This gradient flow can also be viewed as the flow associated to the Euclidean

outward-pointing normal to the level sets of distR3(·, ∂Ω). The volume of Ω ∩ Q is the constant
term of the desired Taylor series.

It is (roughly) this later approach that we will adapt to the Heisenberg setting. Instead of

considering an arbitrary Borel set Q ⊆ R3 for localization, we begin with any sufficiently regular
set B0 ⊆ U0 ⊆ (∂Ω \ char(∂Ω)) and define the localizing set Q to be the image of the flow
associated with the embedded horizontal normal N . As mentioned in the introduction, this flow
has been studied in depth as the metric normal in [1] and [2].
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We now implement the above approach. For simplicity, we consider B0 ⊆ U0 ⊆ ∂Ω to be of the
form

B0 := BR3(p, r) ∩ ∂Ω,

where p ∈ H and r > 0 are chosen so that B0 is homeomorphic to a closed disk; this situation
generalizes easily to the situation that B0 is the closure of any connected open subset of U0 with
Lipschitz boundary components.

Because of this simplification, we may parametrize the boundary ∂B0 of B0 with a single smooth
function

β : [−τ, τ ] −→ ∂B0

for some τ > 0.
The following proposition states that the flow of the embedded horizontal normal exists on any

short time interval containing 0. The proof is standard and thus omitted.

Proposition 3.1. There exists s0 > 0 such that for any g0 ∈ U0 ⊆ ∂Ω, the Cauchy problem

(3.1)

{
ϕ̇(s) = N(ϕ(s)),

ϕ(0) = g0 ∈ U0,

has a local solution ϕg0 : [−s0, s0]→ U satisfying

(3.2) dcc(g0, ϕg0(σ)) = |σ| and δ(ϕg0(σ)) = σ,

for each σ ∈ [−s0, s0].

We define the localizing set of depth s0 generated by the set B0 ⊆ U0 ⊆ ∂Ω by

(3.3) Q := {ϕg(s) : g ∈ B0, |s| ≤ s0} .

As mentioned in the introduction, for ε ≥ 0, we denote

Ωε := {p ∈ H : dcc(p,Ω) ≤ ε}

For 0 ≤ ε ≤ s0, we define the localized Heisenberg ε-neighborhood of Ω by Ωε ∩Q. The first task in
the proof of Theorem 1.1 is to give a power series expansion of the function

ε 7→ L3(Ωε ∩Q)

on the interval [0, s0), using derivatives from the right at ε = 0.
Note that

(3.4) Ωε ∩Q = (Ω ∩Q) ∪ {p ∈ Q : 0 < δ(p) < ε}.

As in the Euclidean case, the volume of Ω∩Q will be the constant term of the desired power series,
and so we will be mostly concerned with estimating the volume of the set

Qε := {g ∈ Q : 0 < δ(g) < ε} .

It is important to note that Qε is not the Heisenberg ε-neighborhood of Q. Rather, it is the track
of B0 under the flow of the embedded horizontal normal N for the time interval (0, ε).

The key tool in doing so is a version of the divergence theorem adapted to the structure of the
Heisenberg group and of our localizing set Q. For this we will need to identify the boundary of
certain sets related to Qε. For −s0 < s < t < s0, denote

Qs,t := {g ∈ Q : s < δ(g) < t} = δ−1((s, t)) ∩Q,
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so that Qε = Q0,ε. We define the initial boundary, the lateral boundary, and the final boundary of

Qs,t by

∂iQs,t := {ϕg(s), g ∈ B0} = δ−1(s) ∩Q,

∂lQs,t := {ϕg(ε) : g ∈ ∂B0, s < ε < t} ,

∂fQs,t := {ϕg(t), g ∈ B0} = δ−1(t) ∩Q.

respectively. An elementary argument shows that

(3.5) ∂(Qs,t) = ∂iQs,t ∪ ∂lQs,t ∪ ∂fQs,t.

Define a vector field µ : ∂(Qs,t)→ R3 by

µ(p) =


− ∇δ(p)
||∇δ(p)||R3

p ∈ ∂iQs,t,
w(p) p ∈ ∂lQs,t,
∇δ(p)

||∇δ(p)||R3
p ∈ ∂fQs,t,

where w : ∂lQs,t → R3 is the Euclidean outward unit normal vector to ∂(Qs,t). Then µ is the

Euclidean unit outward-pointing normal vector field to ∂(Qs,t). Denote its projection onto the

horizontal distribution by µH, so that

(3.6) µH(p) =


− N(p)
||∇δ(p)||R3

p ∈ ∂iQs,t,
wH(p) p ∈ ∂lQs,t,

N(p)
||∇δ(p)||R3

p ∈ ∂fQs,t,

where wH is the projection of w onto the horizontal distribution.

The next result shows that on the lateral boundary, the vector wH is perpendicular to the
embedded horizontal normal N with respect to the scalar product 〈·, ·〉H. The analogous result in

the Euclidean case is obvious.

Lemma 3.2. Let p ∈ ∂lQs,t. Then

(3.7) 〈N(p), wH(p)〉H = 0.

Proof. Recall that we have already parametrized B0 by the smooth function β : [−τ, τ ] → ∂B0.

Therefore, a parametrization of the lateral boundary ∂lQε is given by ψ : [−τ, τ ]× (0, ε), where

ψ(t, s) = ϕβ(t)(s).

The Euclidean tangent space to ∂lQε at a point p = (p1, p2, p3) = ψ(t0, s0) is thus spanned by

v = (v1, v2, v3) :=
∂ψ

∂t
(t0, s0), and

N(p) =
∂ψ

∂s
(t0, s0).

For convenience, denote N(p) = n1X1(p) + n2X2(p). Taking the cross product of v and N(p) now

shows that w(p) is a multiple of (w1, w2, w3), where

w1 = 2v2(p2n1 − p1n2)− v3n2

w2 = −2v1(p2n1 − p1n2) + v3n1

w3 = v1n2 − v2n1.
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The projection wH(p) of (w1, w2, w3) onto the horizontal tangent space HpH is given by

(w1 + 2p2w3)X1(p) + (w2 − 2p1w3)X2(p).

The result now follows from a simple calculation. �

Now, we recall that away from the characteristic set, the Heisenberg surface measure is mutually
absolutely continuous with respect to the Euclidean 2-dimensional surface measure, and the Radon-
Nikodym derivative is precisely the Euclidean length of the gradient of δ. The relevant result is given
in [7], which in our setting translates to the following: for any s ∈ [−s0, s0] and any measurable
function F : Q→ R,

(3.8)

∫
δ−1(s)∩Q

F dH3
dcc =

∫
δ−1(s)∩Q

F · ‖∇δ‖−1
R3 dH2

R3 .

The general version of the Heisenberg divergence theorem (c.f. [13, Corollary 7.7]) takes a par-
ticularly simple form when adapted to our setting.

Proposition 3.3. Let c : U → R be a C∞-function and let −s0 < s < t < s0. Then the vector field

cN : U → R3 satisfies∫
Qs,t

divH(cN) dL3 =

∫
δ−1(t)∩Q

c dH3
dcc −

∫
δ−1(s)∩Q

c dH3
dcc ,

Proof. Let us start with V = aX1 + bX2 : U → R3 being any C∞-smooth vector field with val-
ues in the horizontal distribution. Applying the Euclidean divergence theorem, Lemma 3.2, and
calculating, we see that

(3.9)

∫
Qs,t

divH V dL3 =

∫
Qs,t

div
(
(a, b, 2ax2 − 2bx1)

)
dL3

=

∫
∂(Qs,t)

〈(a, b, 2ax2 − 2bx1), µ)〉R3 dH2
R3

=

∫
∂(Qs,t)

〈V, µH〉H dH2
R3 .

We are interested in the particular case V = cN . Using formula (3.5), Lemma 3.2, the fact that

‖N‖H = 1,and formula (3.8), we have that

(3.10)

∫
Qs,t

divH(cN) dL3 =

∫
∂fQs,t

〈cN,N〉H ||∇δ||
−1
R3 dH2

R3 −
∫
∂iQs,t

〈cN,N〉H ||∇δ||
−1
R3 dH2

R3

=

∫
δ−1(t)∩Q

c dH3
dcc −

∫
δ−1(s)∩Q

c dH3
dcc ,

as desired. �

3.2. Derivatives and iterated divergences. In this section, we related the derivatives of the
function

ε 7→ L3 (Ωε ∩Q)

on the interval [0, s0) to the iterated divergences of δ, which have been defined in the introduction.
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We will show that the sequence of derivatives a(i) : [0, s0)→ R inductively expressed by

a(0)(ε) := L3 (Ωε ∩Q) ,

a(i+1)(ε) :=

{
lims↘0

a(i)(s)−a(i)(0)
s ε = 0,

lims→0
a(i)(ε+s)−a(i)(ε)

s ε > 0,

is indeed well-defined and can be expressed in terms of the above iterated divergences.

Theorem 3.4. For each integer i ≥ 1 and number ε ∈ [0, s0), the limit a(i)(ε) exists and is given
by

(3.11) a(i)(ε) =

∫
δ−1(ε)∩Q

(divH
(i−1)∇Hδ) dH3

dcc .

We will need the following result regarding the continuity of integrals with respect to level sets
of δ. It is a consequence of the Euclidean divergence theorem, and is omitted.

Lemma 3.5. Let F : Q→ R be a C∞-smooth function. Then, for every ε ∈ (−s0, s0),

(3.12) lim
s→ε

∫
δ−1(s)∩Q

F dH2
R3 =

∫
δ−1(ε)∩Q

F dH2
R3 .

Proof of Theorem 3.4. To begin, note that for ε > 0,

a(0)(ε) = L3
(
Ω ∩Q

)
+ L3(Qε),

while a(0)(0) = L3
(
Ω ∩Q

)
.

Using the Euclidean co-area formula, the continuity of the integral provided by Lemma 3.5, the
mean value theorem, and the measure relationship given by (3.8), we see that for ε ≥ 0,

lim
s↘0

L3(Qε,ε+s)

s
= lim

s↘0

1

s

∫
Qε,ε+s

||∇δ||R3

||∇δ||R3

dL3

= lim
s↘0

1

s

∫ ε+s

ε

(∫
δ−1(σ)∩Q

||∇δ||−1
R3 dH2

R3

)
dσ

=

∫
δ−1(ε)∩Q

||∇δ||−1
R3 dH2

R3

=

∫
δ−1(ε)∩Q

dH3
dcc .(3.13)

Setting ε = 0 above now shows that

a(1)(0) =

∫
δ−1(0)∩Q

dH3
dcc = H3

dcc(∂Ω ∩Q).

When 0 < ε < s0, a similar argument for s↗ 0 now implies that

a(1)(ε) =

∫
δ−1(ε)∩Q

dH3
dcc .

We now assume the inductive hypothesis that for an integer i ≥ 1 and all 0 ≤ ε < s0,

a(i)(ε) =

∫
δ−1(ε)∩Q

(divH
(i−1)∇Hδ) dH3

dcc .
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It follows that

lim
s↘0

a(i)(ε+ s)− a(i)(ε)

s

= lim
s↘0

1

s

(∫
δ−1(ε+s)∩Q

(divH
(i−1)∇Hδ) dH3

dcc −
∫
δ−1(ε)∩Q

(divH
(i−1)∇Hδ) dH3

dcc

)
.

Proposition 3.3 and the definition of the iterated divergences now yield

lim
s↘0

a(i)(ε+ s)− a(i)(ε)

s
= lim

s↘0

1

s

∫
Qε,ε+s

(divH
(i)∇Hδ) dL3.

Using the same argument that led to (3.13), we conclude that

lim
s↘0

a(i)(ε+ s)− a(i)(ε)

s
=

∫
δ−1(ε)∩Q

(divH
(i)∇Hδ) dH3

dcc .

Using a similar line of reasoning in the case that ε > 0 and s ↗ 0, we now conclude that for all
ε ∈ [0, s0),

a(i+1)(ε) =

∫
δ−1(ε)∩Q

(divH
(i)∇Hδ) dH3

dcc ,

as desired. �

4. Calculating the iterated divergences

4.1. A recursive formula. Now that we have related the iterated divergences to the derivatives of
the volume function, it behooves us to calculate the iterated divergences. The goal of this section is
to show that all iterated divergences can be expressed using second-order derivatives of the signed

distance function δ, although a priori divH
(i)∇Hδ involves (i+ 1)st-order derivatives.

To simplify the notation in the coming computation, in this section we will denote the composition
of vector fields Xi(Xj) by Xij and Xi(Xj(Xk)) by Xijk, for i, j, k ∈ {1, 2, 3}. Products of vector

fields will only be used once the vector fields have been applied to a function, namely δ. For
example,

(Xiδ)(Xjkδ) = (Xiδ)(Xj(Xkδ)).

Here we give the proof of Theorem 1.2. The basic idea is to differentiate the eikonal equation to
find relationships between various first, second, and third order derivatives of the signed distance
function.

Lemma 4.1. The following relations hold:

(4.1)

 (X1δ)(X11δ) + (X2δ)(X12δ) = 0,
(X1δ)(X21δ) + (X2δ)(X22δ) = 0,
(X1δ)(X31δ) + (X2δ)(X32δ) = 0.

(4.2)

 (X11δ)(X22δ) = (X21δ)(X12δ),
(X11δ)(X32δ) = (X31δ)(X12δ),
(X21δ)(X32δ) = (X31δ)(X22δ).

(4.3)

 (X11δ)
2 + (X1δ)(X111δ) + (X12δ)

2 + (X2δ)(X112δ) = 0,
(X21δ)

2 + (X1δ)(X221δ) + (X22δ)
2 + (X2δ)(X222δ) = 0,

(X31δ)
2 + (X1δ)(X331δ) + (X32δ)

2 + (X2δ)(X332δ) = 0.



STEINER’S FORMULA IN THE HEISENBERG GROUP 11

(4.4)

{
(X11δ)(X31δ) + (X1δ)(X131δ) + (X12δ)(X32δ) + (X2δ)(X132δ) = 0,
(X21δ)(X31δ) + (X1δ)(X231δ) + (X22δ)(X32δ) + (X2δ)(X232δ) = 0.

(4.5) X33δ =
1

4
(X321δ −X312δ).

(4.6)

{
8X32δ = −X122δ +X221δ,
8X31δ = −X112δ +X211δ.

Proof. The eikonal equation (2.2) can be stated as

(4.7) (X1δ)
2 + (X2δ)

2 = 1.

Therefore (4.1) follows from differentiating (4.7), by X1, X2, and X3.

The equations in (4.1) show that the 3 × 2 matrix whose entries are Xij , with i = 1, 2, 3 and

j = 1, 2, has a non-trivial kernel. Therefore this matrix has rank at most 1, and the equations in
(4.2) follow.

For (4.3), it is sufficient to differentiate the ith equation of (4.1) by Xi, for i = 1, 2, 3. Similarly,

the equations in (4.4) follow from differentiating the third equation of (4.1) by X1 and X2.

Finally, (4.5) and (4.6) hold because X3 commutes with both X1 and X2, indeed:

X33δ = −1

4
X3(X12δ −X21δ) =

1

4
(−X312δ +X321δ),

and

2X32δ = X32δ +X23δ = −1

4
(X12 −X21)X2δ +X2

(
−X12δ +X21δ

4

)
=

1

4
(−X122δ +X212δ −X212δ +X221δ).

The second equation of (4.6) is obtained in an analogous way. �

Now, note that for i ≥ 1,

divH
(i)∇Hδ = divH

(
(divH

(i−1)∇Hδ) · ∇Hδ
)

= (divH
(i−1)∇Hδ)∆Hδ + 〈∇H(div

(i−1)
H ∇Hδ),∇Hδ〉,(4.8)

where ∆Hδ is the horizontal Laplacian of δ, defined by A := ∆Hδ := divH(∇Hδ). The second

summand in the expression (4.8) behaves very nicely. Indeed, the operator g, defined on a smooth
function α : U → R by

g(α) := 〈∇Hα,∇Hδ〉,
is linear and satisfies the Leibniz rule, i.e., given another smooth function β : U → R,

g(α+ β) = g(α) + g(β),

g(αβ) = g(α)β + αg(β).

With this notation in hand, we may write

(4.9) divH
(i)∇Hδ =

(
divH

(i−1)∇Hδ
)
A+ g

(
divH

(i−1)∇Hδ
)
.
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Lemma 4.2. The following relations hold:

g(1) = 0,(4.10)

g(A) = B + 2C −A2,(4.11)

g(B) = 0,(4.12)

g(C) = D −AC,(4.13)

g(D) = −E,(4.14)

g(E) = −2AE + 2CD.(4.15)

Proof. The equality (4.10) follows from the Leibniz rule. For (4.11), we calculate

g(A) = 〈∇H(X11δ +X22δ),∇Hδ〉 = (X1δ) (X111δ +X122δ) + (X2δ) (X211δ +X222δ)

(4.3)
= −(X11δ)

2 − (X12δ)
2 − (X2δ)(X112δ)

− (X21δ)
2 − (X1δ)(X221δ)− (X22δ)

2 + (X1δ)(X122δ) + (X2δ)(X211δ)

= −
(
X2

11δ +X2
22δ + 2(X12δ)(X21δ)

)
−
(
X2

21δ +X2
12δ − 2(X12δ)(X21δ)

)
− (X1δ)(−X122δ +X221δ) + (X2δ)(−X112δ +X211δ)

(4.2),(4.6)
= −(X11δ +X22δ)

2 − (−4X3δ)
2 − 8(X1δ)(X32δ) + 8(X2δ)(X31δ)

= −A2 +B + 2C.

For (4.12),

g(B) = −〈∇H(X3δ)
2,∇Hδ〉 = −2(X1δ)(X3δ)(X13δ)− 2(X2δ)(X3δ)(X23δ)

(4.1)
= 0.

For (4.13),

g(C) = −4 (〈∇H((X1δ)(X32δ)),∇Hδ〉 − 〈∇H((X2δ)(X31δ)),∇Hδ〉)

= −4(X32δ) ((X1δ)(X11δ) + (X2δ)(X21δ)) + 4(X31δ) ((X1δ)(X12δ) + (X2δ)(X22δ))

− 4(X1δ) ((X1δ)(X132δ) + (X2δ)(X232δ)) + 4(X2δ) ((X1δ)(X131δ) + (X2δ)(X231δ))

(4.1),(4.4)
= −16(X3δ) ((X1δ)(X31δ) + (X2δ)(X32δ))

− 4(X1δ) ((X1δ)(X123δ −X213δ)− (X21δ)(X31δ)− (X22δ)(X32δ))

+ 4(X2δ) ((X2δ)(X213δ −X123δ)− (X11δ)(X31δ)− (X12δ)(X32δ))

(4.5)
= 16

(
(X1δ)

2 + (X2δ)
2
)

(X33δ)

+ 4(X1δ) ((X21δ)(X31δ) + (X22δ)(X32δ))− 4(X2δ) ((X11δ)(X31δ) + (X12δ)(X32δ))

+ 4(X1δ)(X11δ)(X32δ)− 4(X1δ)(X11δ)(X32δ) + 4(X2δ)(X22δ)(X31δ)− 4(X2δ)(X22δ)(X31δ)

= D + 4 [(X1δ)(X32δ)− (X2δ)(X31δ)] (X11δ +X22δ)

− 4(X32δ) [(X1δ)(X11δ) + (X2δ)(X12δ)] + 4(X31δ) [(X1δ)(X21δ) + (X2δ)(X22δ)]

(4.1)
= D −AC.

For (4.14),

g(D) = 16〈∇H(X33δ),∇Hδ〉 = 16 [(X1δ)(X133δ) + (X2δ)(X233δ)]
(4.3)
= −E.
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For (4.15),

g(E) = 16〈∇H

(
(X31δ)

2 + (X32δ)
2
)
,∇Hδ〉

= 32(X1δ) [(X31δ)(X131δ) + (X32δ)(X132δ)] + 32(X2δ) [(X31δ)(X231δ) + (X32δ)(X232δ)]

(4.4)
= 32(X31δ) [−(X11δ)(X31δ)− (X12δ)(X32δ)− (X2δ)(X123δ −X213δ)]

+ 32(X32δ) [−(X21δ)(X31δ)− (X22δ)(X32δ) + (X1δ)(X123δ −X213δ)]

(4.5)
= −128(X33δ) [(X1δ)(X32δ)− (X2δ)(X31δ)]− 32(X11δ)(X31δ)

2 − 32(X22δ)(X32δ)
2

− 32(X31δ)(X32δ) [X12δ +X21δ] + 32(X11δ)(X32δ)
2 − 32(X11δ)(X32δ)

2

+ 32(X22δ)(X31δ)
2 − 32(X22δ)(X31δ)

2

= 2CD − 32 (X11δ +X22δ)
[
(X31δ)

2 + (X32δ)
2
]

+ 32(X31δ) [(X22δ)(X31δ)− (X21δ)(X32δ)]

+ 32(X32δ) [(X11δ)(X32δ)− (X12δ)(X31δ)]

(4.2)
= 2CD − 2AE.

�

Proof of Theorem 1.2. The first four iterated divergences are easy to calculate using (4.9).
We proceed by induction on j, having already proven the desired result when j = 2. Assume

that (1.2) and(1.3) hold for some j ≥ 2. Now,

divH
(2(j+1)−1)∇Hδ = divH

(2j+1)∇Hδ = A divH
(2j)∇Hδ + g(divH

(2j)∇Hδ)
(1.3)
= ABj−2

(
divH

(4)∇Hδ + 2(j − 2)(AD − E)
)

+Bj−2g
(

divH
(4)∇Hδ + 2(j − 2)(AD − E)

)
= ABj−2

(
B2 + 2BC + 2AD − 2E + 2(j − 2)(AD − E)

)
+Bj−2g

(
B2 + 2BC + 2AD − 2E + 2(j − 2)(AD − E)

)
= ABj + 2ABj−1C + 2(j − 1)A2Bj−2D − 2(j − 1)ABj−2E

+Bj−2g
(
B2 + 2BC + 2(j − 1)(AD − E)

)
= ABj + 2ABj−1C + 2(j − 1)A2Bj−2D − 2(j − 1)ABj−2E

+Bj−2 (2BD − 2ABC + 2(j − 1)Ag(D) + 2(j − 1)Dg(A)− 2(j − 1)g(E))

= ABj + 2ABj−1C + 2(j − 1)A2Bj−2D − 2(j − 1)ABj−2E + 2Bj−1D

− 2ABj−1C − 2(j − 1)ABj−2E − 2(j − 1)A2Bj−2D + 4(j − 1)Bj−2CD

+ 2(j − 1)Bj−1D + 4(j − 1)ABj−2E − 4(j − 1)Bj−2CD

= Bj−1 (AB + 2D + 2(j − 1)D)

= B(j+1)−2
(

divH
(3)∇Hδ + 2((j + 1)− 2)D

)
.

Finally, using the result just obtained for divH
(2j+1)∇Hδ, we get the following
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divH
(2(j+1))∇Hδ = divH

(2j+2)∇Hδ = A divH
(2j+1)∇Hδ + g(divH

(2j+1)∇Hδ)

= ABj−1
(

divH
(3)∇Hδ + 2(j − 1)D

)
+Bj−1g

(
divH

(3)∇Hδ + 2(j − 1)D
)

= ABj−1 (AB + 2D + 2(j − 1)D) +Bj−1g (AB + 2D + 2(j − 1)D)

= ABj−1 (AB + 2jD) +Bj−1g (AB + 2jD)

= A2Bj + 2jABj−1D +Bjg(A) + 2jBj−1g(D)

= A2Bj + 2jABj−1D −A2Bj + 2BjC +Bj+1 − 2Bj−1E

= Bj−1
(
B2 + 2BC + 2jAD − 2jE

)
= Bj−1

(
B2 + 2BC + 2AD − 2E + 2(j − 1)(AD − E)

)
= B(j+1)−2

(
divH

(4)∇Hδ + 2((j + 1)− 2)(AD − E)
)
.

This completes the induction argument. �

4.2. Analyticity of the volume function. As an application of the recursive formula for the
iterated divergences found in the previous section, we show that the volume function is analytic.
This will complete the proof of Theorem 1.1.

Proof of Theorem 1.1. That the derivatives of the function

ε 7→ L3(Ωε ∩Q)

are given by the asserted formula has been established by Theorem 3.4. In order to show the

convergence of the corresponding power series to the function, we will estimate |a(i)(ε)| on the

interval [0, s0]. We record only the case that i = 2j is a positive even integer; a similar argument
is valid when i is odd. By Theorem 3.4,∣∣∣a(i)(ε)

∣∣∣ ≤ ∫
δ−1(ε)∩Q

∣∣∣divH
(2j−1)∇Hδ

∣∣∣ dH3
dcc

=

∫
δ−1(ε)∩Q

∣∣ABj−1 + 2(j − 1)Bj−2D
∣∣ dH3

dcc

≤
∫
δ−1(ε)∩Q

(|A|+ |B|)j + 2(j − 1) (1 + |B|+ |D|)j−1 dH3
dcc .

Due to the smoothness of δ, there exists a constant L > 0 such that the last integrand is bounded

by Lj on compact sets. Since δ−1(ε) ∩Q is included in a compact set, we have that there exists a
constant M > 0 satisfying

(4.16) sup
ε∈[0,s0]

∣∣∣a(i)(ε)
∣∣∣ ≤M j .

This and its counter-part for odd i quickly imply the desired result. �

5. An example and final remarks

In this section we present an example in which we calculate the volume of a localized Heisenberg
ε-neighborhood. It is in general non-trivial to calculate the signed distance function to a given
set, the embedded horizontal normal, or its flow. However, general results from [1] and [2] give
a formula for the integral curves of the embedded horizontal normal. The embedded horizontal
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normal itself can then be obtained by differentiation, and in certain cases (such as the coming

example), a change of coordinates can be used to determine the signed distance function.

Example 5.1. We consider the half-space

Ω := Hx−3
= {(x1, x2, x3) ∈ H : x3 < 0}

with boundary

∂Ω = {(x1, x2, x3) ∈ H : x3 = 0},
which has a single characteristic point at (0, 0, 0).

For 0 < r < R, define the annulus

B0 = {(x1, x2, 0) ∈ R3 : r2 < x2
1 + x2

2 < R2},

and denote by U ⊆ H an open set that contains the annulus B0 and on which the signed-distance

to ∂Ω function δ is C∞-smooth. Denote by N : U → R3 the embedded horizontal normal. By
[1, Proposition 3.1], for g = (g1, g2, 0) ∈ ∂Hx−3

∩ U , the solution ϕg = (ϕ1, ϕ2, ϕ3) of the Cauchy

problem {
ϕ̇(s) = N(ϕ(s)),

ϕ(0) = g,

is given by

(5.1) ϕg(s) =

 ϕ1(s)
ϕ2(s)
ϕ3(s)

 =



g1

2

(
1 + cos

(
2s

|g|

))
+
g2

2
sin

(
2s

|g|

)
g2

2

(
1 + cos

(
2s

|g|

))
− g1

2
sin

(
2s

|g|

)
|g|2

2

(
2s

|g|
+ sin

(
2s

|g|

))
.

 ,

where |g| = (g2
1 + g2

2)1/2. Moreover, there is a number s0 > 0 such that for any g ∈ U0, the solution

above exists on the interval [−s0, s0].
We consider the localizing set Q generated by the set B0 and depth s0, i.e., we localize using

the annulus and the flow defined above. We wish to calculate, for 0 < ε < s0, the volume of the
resulting localized Heisenberg ε-neighborhood Ωε ∩Q.

We introduce a new coordinate system of Q, as in [2]. For each point (x1, x2, x3) ∈ Q, we may

find a g ∈ B0 and s ∈ [−s0, s0] so that

(x1, x2, x3) = ϕg(s).

We first express g in polar coordinates as

g = (g1, g2, 0) = (ρ cos θ, ρ sin θ, 0),

and then set

β =
s

ρ
and α = θ − β.

Our new coordinate system on Q is (ρ, α, β). Writing (5.1) in these coordinates and simplifying
shows that

(x1, x2, x3) = ϕg(s) =

(
ρ cos(β) cos(α), ρ cos(β) sin(α), ρ2

(
β +

sin 2β

2

))
.

By Proposition 3.1,

δ(x1, x2, x3) = s = ρβ.
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Hence, using the chain rule, we may calculate that

X3δ =
1

2ρ
, (X1δ)(X32δ)− (X2δ)(X31δ) = − cosβ

2ρ2(cosβ + β sinβ)
,

and

X33δ = − sinβ

4ρ3(cosβ + β sinβ)
, (X31δ)

2 + (X32δ)
2 =

cos2(β)

4ρ4(cosβ + β sinβ)2
.

Setting β = 0 we can compute the functions A, B, C, D and E restricted to the plane ∂Hx−3
:

A = D = 0, B = − 4

ρ2
, C =

2

ρ2
, E =

4

ρ4
.

Note that the Euclidean outward pointing unit normal to Hx−3
is ν = (0, 0, 1). Hence

||∇δ||−1
R3 =

√
〈X1, ν〉2 + 〈X2, ν〉2 = 2

√
x2

1 + x2
2 = 2ρ.

It follows that∫
∂Ω∩Q

(divH
(0)∇Hδ) dH3

dcc =

∫
∂Ω∩Q

||∇δ||−1
R3 dH2

R3 =
4π

3
(R3 − r3).

Moreover, for each integer n ≥ 0, using (1.3) with j = n+ 1 yields∫
∂Ω∩Q

(divH
(2n+2)∇Hδ) dH3

dcc = 2

∫ 2π

0

∫ R

r
ρ2

((
−4

ρ2

)n−1(−8n

ρ4

))
dρdθ

=
4π(−1)nn22n+1

(1− 2n)
(R1−2n − r1−2n).

Plugging these results into the statement of Theorem 1.1 gives a Taylor series expansion for the
volume of Ωε ∩Q at ε = 0: namely

L3(Ωε ∩Q) =
4π

3
(R3 − r3)(ε+ s0)(5.2)

+ 4π
∞∑
n=0

(−1)n22n+1n
(
R1−2n − r1−2n

)
(1− 2n)(2n+ 3)!

(
ε2n+3 + s2n+3

0

)
.

It appears that this series converges even when r = 0. However, for each r > 0, equation (5.2) has
been proven to be valid only for sufficiently small s0 depending on r; it could very well be that s0

tends to 0 as r tends to zero. This dependence arises from the fact that the eikonal equality and
the smoothness of the signed distance function are only known off of the characteristic set (see [1]

and [17]). It is an interesting question whether or not Proposition 3.1 is valid when U0 is chosen

to be the punctured disk {(x1, x2, 0) ∈ H : 0 < x2
1 + x2

2 < R}, and if so, is the volume of the

corresponding localized set Ωε ∩Q given by (5.2) with r = 0.

Before finishing the paper a few remarks are in order: Our first remark is about the regularity
assumptions. In order to avoid technical complications we assumed a maximal degree of regularity,
namely C∞ of our surfaces and the associated defining functions. Therefore all iterated divergences

are a priori well defined. However, our proofs show that the regularity C4 of the surface suffices.

Indeed, this implies a C3 regularity of the normalized defining function. Let us observe that all
iterated divergences are expressed as second order derivatives of the normalized distance function,
an in our proofs we need at most first order derivatives of these expressions. This shows that for

our considerations C4 smoothness is sufficient.
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Let us mention,that in the Euclidean versions of Steiner’s formula a much less regularity is
sufficient. Indeed, the notion of positive reach [9] is enough to use in this context. It is in an
interesting problem to study sets of positive reach in the context of sub-Riemannian geometries in
connection with Steiner type formulae.

It is an interesting question to investigate the geometric meaning of the iterated divergences
appearing in this paper. In the forthcoming article: [4] the third coefficient of the expansion
is interpreted as horizontal Gauss curvature. In this paper it is shown that for regular compact
surfaces with no characteristic points, the Steiner formula is reduced to a second degree polynomial.
This could indicate the fact that higher order coefficients have no intrinsic geometric interpretation
and are related to the presence of boundary terms or of the characteristic points.

A natural generalization of Steiner’s formula in Riemannian manifolds is the tube formula of
Weyl [15] which gives the volume of a tube of a sub manifold in the Riemannian context. It would
be very interesting to investigate the validity of tube formulas in higher dimensional Heisenberg
groups.
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