We give a proof of existence and uniqueness of viscosity solutions to parabolic quasi- linear equations for a fairly general class of nonconvex Hamiltonians with superlinear growth in the gradient variable. The approach is mainly based on classical techniques for uniformly parabolic quasilinear equations and on the Lipschitz estimates provided in [S. N. Armstrong and H. V. Tran, Viscosity solutions of general viscous Hamilton–Jacobi equations, Math. Ann. 361 (2015) 647–687], as well as on viscosity solution arguments.
Existence and uniqueness of solutions to parabolic equations with superlinear Hamiltonians / Davini, Andrea. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - (2019), pp. 1-25. [10.1142/S0219199717500985]
Existence and uniqueness of solutions to parabolic equations with superlinear Hamiltonians
DAVINI, ANDREA
2019
Abstract
We give a proof of existence and uniqueness of viscosity solutions to parabolic quasi- linear equations for a fairly general class of nonconvex Hamiltonians with superlinear growth in the gradient variable. The approach is mainly based on classical techniques for uniformly parabolic quasilinear equations and on the Lipschitz estimates provided in [S. N. Armstrong and H. V. Tran, Viscosity solutions of general viscous Hamilton–Jacobi equations, Math. Ann. 361 (2015) 647–687], as well as on viscosity solution arguments.File | Dimensione | Formato | |
---|---|---|---|
Davini_Existence-and-uniqueness_2019.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
334.78 kB
Formato
Adobe PDF
|
334.78 kB | Adobe PDF | Contatta l'autore |
Davini_preprint_Existence-and-uniqueness_2019.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
364.88 kB
Formato
Unknown
|
364.88 kB | Unknown |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.