Deuterium (hydrogen) incorporation in dilute nitrides (e.g., GaAsN and GaPN) modifies dramatically the crystal's electronic and structural properties and represents a prominent example of defect engineering in semiconductors. However, the microscopic origin of D-related effects is still an experimentally unresolved issue. In this paper, we used nuclear reaction analyses and/or channeling, high resolution x-ray diffraction, photoluminescence, and x-ray absorption fine structure measurements to determine how the stoichiometric [D]/[N] ratio and the local structure of the N-D complexes parallel the evolution of the GaAsN electronic and strain properties upon irradiation and controlled removal of D. The experimental results provide the following picture: (i) Upon deuteration, nitrogen-deuterium complexes form with [D]/[N]=3, leading to a neutralization of the N electronic effects in GaAs and to a strain reversal (from tensile to compressive) of the N-containing layer. (ii) A moderate annealing at 250 degrees C gives [D]/[N]=2 and removes the compressive strain, therefore the lattice parameter approaches that of the N-free alloy, whereas the N-induced electronic properties are still passivated. (iii) Finally, annealings at higher temperature (330 degrees C) dissolve the deuterium-nitrogen complexes, and consequently the electronic properties and the tensile strain of the as-grown GaAsN lattice are recovered. Therefore, we conclude that the complex responsible for N passivation contains two deuterium atoms per nitrogen atom, while strain reversal in deuterated GaAsN is due to a complex with a third, less tightly bound deuterium atom.
Formation and dissolution of D-N complexes in dilute nitrides / Marina, Berti; Gabriele, Bisognin; Davide De, Salvador; Enrico, Napolitani; Silvia, Vangelista; Polimeni, Antonio; Capizzi, Mario; Federico, Boscherini; Gianluca, Ciatto; Silvia, Rubini; Faustino, Martelli; Alfonso, Franciosi. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 76:20(2007), pp. 205323-1-205323-8. [10.1103/physrevb.76.205323]
Formation and dissolution of D-N complexes in dilute nitrides
POLIMENI, Antonio;CAPIZZI, Mario;
2007
Abstract
Deuterium (hydrogen) incorporation in dilute nitrides (e.g., GaAsN and GaPN) modifies dramatically the crystal's electronic and structural properties and represents a prominent example of defect engineering in semiconductors. However, the microscopic origin of D-related effects is still an experimentally unresolved issue. In this paper, we used nuclear reaction analyses and/or channeling, high resolution x-ray diffraction, photoluminescence, and x-ray absorption fine structure measurements to determine how the stoichiometric [D]/[N] ratio and the local structure of the N-D complexes parallel the evolution of the GaAsN electronic and strain properties upon irradiation and controlled removal of D. The experimental results provide the following picture: (i) Upon deuteration, nitrogen-deuterium complexes form with [D]/[N]=3, leading to a neutralization of the N electronic effects in GaAs and to a strain reversal (from tensile to compressive) of the N-containing layer. (ii) A moderate annealing at 250 degrees C gives [D]/[N]=2 and removes the compressive strain, therefore the lattice parameter approaches that of the N-free alloy, whereas the N-induced electronic properties are still passivated. (iii) Finally, annealings at higher temperature (330 degrees C) dissolve the deuterium-nitrogen complexes, and consequently the electronic properties and the tensile strain of the as-grown GaAsN lattice are recovered. Therefore, we conclude that the complex responsible for N passivation contains two deuterium atoms per nitrogen atom, while strain reversal in deuterated GaAsN is due to a complex with a third, less tightly bound deuterium atom.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.