We consider a three-particle quantum system in dimension three composed of two identical fermions of mass one and a different particle of mass m. The particles interact via two-body short range potentials. We assume that the Hamiltonians of all the two-particle subsystems do not have bound states with negative energy and, moreover, that the Hamiltonians of the two subsystems made of a fermion and the different particle have a zero-energy resonance. Under these conditions and for $mm_∗$ the number of negative eigenvalues of $H$ is finite and for $m
Efimov effect for a three-particle system with two identical fermions / Basti, Giulia; Teta, Alessandro. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - STAMPA. - 18:12(2017), pp. 3975-4003. [10.1007/s00023-017-0608-8]
Efimov effect for a three-particle system with two identical fermions
Basti, Giulia;Teta, Alessandro
2017
Abstract
We consider a three-particle quantum system in dimension three composed of two identical fermions of mass one and a different particle of mass m. The particles interact via two-body short range potentials. We assume that the Hamiltonians of all the two-particle subsystems do not have bound states with negative energy and, moreover, that the Hamiltonians of the two subsystems made of a fermion and the different particle have a zero-energy resonance. Under these conditions and for $mm_∗$ the number of negative eigenvalues of $H$ is finite and for $mFile | Dimensione | Formato | |
---|---|---|---|
Basti_postprint_Efimov-effect_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
525.75 kB
Formato
Adobe PDF
|
525.75 kB | Adobe PDF | |
Basti_Efimov-effect_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
655.96 kB
Formato
Adobe PDF
|
655.96 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.