The multivariate method of simulated quantiles (MMSQ) is proposed as a likelihood–free alternative to indirect inference procedures that does not rely on an auxiliary model specification and its asymptotic properties are established. As a further improvement we introduce the Smoothly clipped absolute deviation (SCAD1 –penalty into the MMSQ objective function in order to achieve sparse estimation of the scaling matrix.We extend the asymptotic theory and we show that the sparse– MMSQ estimator enjoys the oracle properties under mild regularity conditions. The method is applied to estimate the parameters of the Skew Elliptical Stable distribution
Estimation and Inference of Skew–Stable distributions using the Multivariate Method of Simulated Quantiles / Stolfi, Paola; Bernardi, Mauro; Petrella, Lea. - ELETTRONICO. - (2017), pp. 955-960. (Intervento presentato al convegno SIS 2017 Statistics and Data Science: new challenges, new generations tenutosi a Firenze).
Estimation and Inference of Skew–Stable distributions using the Multivariate Method of Simulated Quantiles
Lea Petrella
2017
Abstract
The multivariate method of simulated quantiles (MMSQ) is proposed as a likelihood–free alternative to indirect inference procedures that does not rely on an auxiliary model specification and its asymptotic properties are established. As a further improvement we introduce the Smoothly clipped absolute deviation (SCAD1 –penalty into the MMSQ objective function in order to achieve sparse estimation of the scaling matrix.We extend the asymptotic theory and we show that the sparse– MMSQ estimator enjoys the oracle properties under mild regularity conditions. The method is applied to estimate the parameters of the Skew Elliptical Stable distributionFile | Dimensione | Formato | |
---|---|---|---|
Petrella_Estimation-SIS_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
675.72 kB
Formato
Adobe PDF
|
675.72 kB | Adobe PDF | |
Petrella_Frontespizio-Indice-SIS_2017.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
885.48 kB
Formato
Adobe PDF
|
885.48 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.