Estimation and Inference of Skew-Stable
distributions using the Multivariate Method of
Simulated Quantiles

Stima e inferenza per i parametri delle distribuzioni
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Abstract The multivariate method of simulated quantiles (MMSQ) is proposed as
a likelihood—free alternative to indirect inference procedures that does not rely on
an auxiliary model specification and its asymptotic properties are established. As a
further improvement we introduce the Smoothly clipped absolute deviation (SCAD)
£1—penalty into the MMSQ objective function in order to achieve sparse estimation
of the scaling matrix. We extend the asymptotic theory and we show that the sparse—
MMSQ estimator enjoys the oracle properties under mild regularity conditions. The
method is applied to estimate the parameters of the Skew Elliptical Stable distribu-
tion.

Abstract In questo lavoro viene proposto il metodo dei quantili simulati multivariati
che rappresenta una valida alterativa alle procedure di inferenza indiretta e che non
richiede la specificazione diun modello ausiliario e vengono dimostrate le proprieta
asintotiche dello stimatore. Allo scopo di indurre una stima sparsa della matrice di
scala introduciamo inoltre la funzione di penalita SCAD all’interno della funzione
obiettivo del metodo. Un ulteriore contributo e rappresentato dall’estensione della
teoria asintotica nel caso sparso e dalla dimostrazione che lo stimatore soddisfa
le proprieta ORACLE. Il metodo e applicato alla stima dei parametri della dis-
tribuzione Stabile asimmetrica.
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1 Introduction

In this paper we extend the method of simulated quantiles (MSQ) of Dominicy and
Veredas (2013) to a multivariate framework (MMSQ). The method of simulated
quantiles like alternative likelihood—free procedures is based on the minimisation of
the distance between appropriate quantile-based statistics evaluated on the true and
simulated data. The MMSQ effectively deals with distributions that do not admit
moments of any order, like the —Stable or the Tukey lambda, without relying on
the choice of a misspecified auxiliary model. The lack of a natural ordering in the
multivariate setting requires a careful definition of the concept of quantile. Here,
we rely on the notion of projectional quantile recently introduced by Hallin et al.
(2010) and Kong and Mizera (2012). This notion of multivariate quantile makes the
estimator flexible and it allows us to deal with non—elliptically contoured distribu-
tions. As a further improvement we introduce the smoothly clipped absolute devia-
tion (SCAD) ¢1—penalty of Fan and Li (2001) into the MM SQ objective function in
order to achieve sparse estimation of the scaling matrix. The method is illustrated
using several synthetic datasets from distributions for which alternative procedures
are recognised to perform poorly, such as the Skew Elliptical Stable distribution
(SESD) firstly mentioned by Branco and Dey (2001).

The remainder of the paper is structured as follows. Section 2 introduces the
sparse MMSQ estimator. Section 3 defines the Skew—FElliptical distribution of
Branco and Dey (2001) while Section 4 presents simulated—data experiments to
assess the effectiveness of the proposed method. Section 5 concludes.

2 The Multivariate Method of Simulated Quantiles

Let:

(i) 'Y € R? be arandom variable with distribution function Fy (-, ©), which depends
on a vector of unknown parameters © C @ € R¥, and y = (y1,¥2,. .. ,yn)/ be a
vector of n independent realisations of Y;

(i) 93" = (g2",q2",...,q5") be a s x 1 vector of projectional quantiles at given
confidence levels 7; € (0,1) withi =1,2,...,s, and u € S%°1;

(iii) Py =D (q5") be a bx 1 vector of quantile functions assumed to be contin-
uously differentiable with respect to ¢ for all Y and measurable for Y and for all
¥ CO;

(v) §°% = (g9%,¢%Y,...,4%") and &, = D (§*") be the corresponding sample
counterparts;

and assume that &, ¢ cannot be computed analytically but it can be empirically

calculated on simulated data. At each iteration j = 1,2,... the MMSQ compute

~R ~ ~ . . .
¢u7ﬁj = Ile):f:l ‘p;,ﬂj’ where cI):wj is the function &, s computed at the r—th sim-

ulation path from Fy <~, ﬁ(j)>. The parameters are subsequently updated by min-
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imising the distance between the vector of quantile measures calculated on the true
observations &, and that calculated on simulated realisations cﬁﬁﬂ_. The subscript
u denotes that those quantities depend on a set of directions that should be properly
chosen. We establish consistency and asymptotic normality of the proposed estima-
tor. The MMSQ estimator is then extended in order to achieve sparse estimation
of a scaling matrix X. Specifically, the SCAD /;—penalty of Fan end Li (2001) is
introduced into the MMSQ objective function as follows

n . N =R\ 8 ~ R
o= argngn (éll* ¢u,19> Wy (éll* ¢u,19> +n2pl (‘617]

i<j

) I

where Wy is a b x b symmetric positive definite weighting matrix, X = (o, ])l” -1
is the scale matrix and pjy (-) is the SCAD ¢;—penalty. By setting the tuning pa-
rameter A = 0, equation (1) reduces to non sparse MMSQ estimator. We extend the
asymptotic theory and we show that the sparse-MMSQ estimator enjoys the oracle
properties under mild regularity conditions.

3 Skew Elliptical Stable distribution

In this Section we define the quantile-based measures and the optimal directions
u & ™1 for the parameters of the SESD distribution Y ~ SESD,,, (e, &, 2, 8) in-
troduced by Branco and Dey (2001). For the shape parameter ¢, the locations &,
the skewness parameters §; and scale parameters @;, i = 1,2,...,m we consider

40.95u — 40.05u
Ky= —"—
40.75u — 40.25u
My = ¢0.5u
_ q0.95u +90.05,u — 240.5u
=
40.95u — 40.05u
Su = 40.75u — 40.25u;

where u € S~ ! defines a relevant direction. Once the quantile-based measures have
been selected, we need to identify the optimal directions for each parameter. Let
us consider the locations first. Because of the presence of skewness, the median
computed along the canonical directions is not a good quantile measure for the
locations. Therefore, we consider a transformation of the data in order to remove
the skewness. The properties of the Skew Elliptical Stable distribution imply that

Y~ =-Y ~SESD,, (e, &,Q,—38) independent of Y, therefore it holds
Y+Y
7— ~ SESD (a,ﬁ ,Q,o), 2
NG m ¢ (2)
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which means that the variable Z is symmetric and, up to a constant, it has the same
location parameter of Y. Therefore, we choose, as informative measure for the lo-
cations, the median of the transformed variable Z in equation (2). In order to es-
timate the remaining parameters, we consider univariate marginals that have Skew
Elliptical Stable distribution, i.e., ¥; ~ SESD1 (o, &, @i, 6;), by construction. The
quantile-based measures for the shape, skewness and for the diagonal elements of
the scale matrix @; are then computed along the canonical directions.

Now we need to identify the optimal directions for the off-diagonal elements
of the scale matrix €. To this end, we consider the bivariate marginal variables
Yij = (Yi,Yj)/ for 1 <i < j<m. It holds Yij ~ SESDz((x,éij,.Qij,Sij), where
éij _ (gi,gj)/ and Q;; = {aa)),l; gx} while §;; = (5;',6]-)/. Moreover, let Y;; ~
SESD; (ar, &; 322, —0; j) independent of Y;; and let us consider the same construc-
tion introduced for the locations, that is the random variable Z;; = Yi}j;” , having
distribution Z;; ~ SESD; (a, \/Eéij,.Qij,O) Since Z;; is a symmetric variable we

choose the optimal direction u* € S! such that

u = argmax y /W' Q. 3)

ues

4 Simulated—data experiment

To illustrate the effectiveness of the MMSQ in dealing with parameters estimation
of the SESD we consider a simulation example where we fix the dimension m =
5 and a = 1.70, while the location, shape and scale parameters are & =0, § =
(0,0,0,0.9,0.9) and

02502504 0 0
0250504 0 0
ri=|o04 041 0 o |, )

0 0 0 2 255
0 0 025 4

respectively. We consider two different sample sizes #n = 500,2000 and we fix the
number of simulated paths R = 5. Simulation results over 100 replications are re-
ported in Table 1. Table 1 reports the bias (BIAS), the standard deviation (SSD)
and the empirical coverage probabilities (ECP) obtained over 100 replications of
the simulation experiment. Our results show that the MMSQ estimator is always
unbiased, indeed the BIAS is always less 0.15. The SSDs are always small, in
particular for » = 500 it is always less then 0.5. Moreover, the empirical cover-
ages are always in line with their expected values. In order to apply the sparse—
MMSQ we consider a simulation example of dimension m = 12, with n = 200
and R = 5 where the location parameters are equal to zero, the shape parameters
8 =(0,0,0.6,0,0,0,0,0,0,0.6,0.6,0), while we consider the same scale matrix as
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@4
@5
@34
@35
@45

n=>500 n=2000
True BIAS SSD ECP BIAS SSD ECP
1.70  -0.0068 0.0690 0.9500 0.0013 0.0320 0.9500
0.00  0.0048 0.0067 0.9400 0.0022 0.0010 0.1100
0.00  0.0048 0.0063 0.9500 0.0082 0.0016 0.0100
0.00  0.0040 0.0038 0.9100 0.0013 0.0005 0.0600
090 -0.0116 0.1648 0.9700 0.0180 0.0185 0.8100
090 -0.0179 0.1649 0.9700 0.0167 0.0234 0.9200
0.00  0.0016 0.0365 0.9600 0.0032 0.0218 0.9400
000 -0.0029 0.0534 09700 0.0023 0.0286 0.9400
0.00  0.0093 0.0757 0.9400 0.0065 0.0393 0.9500
0.00  -0.0051 0.0703 0.9700 0.0041 0.0356 0.9500
0.00 -0.0059 0.1089 0.9200 -0.0040 0.0618 0.9400
02500 -0.0126 0.0259 0.9400 -0.0027 0.0140 0.9800
0.5000 0.0184 0.0596 0.9200 0.0003 0.0261 0.9400
1.0000 0.0038 0.0998 0.9700 0.0166 0.0538 0.9500
2.0000 -0.1397 03571 09300 -0.1571 0.1700 0.8800
4.0000 -0.4342 0.6637 09100 -0.1142 0.3980 0.9600
07071 -0.0438 0.1336 0.9400 -0.0345 0.1055 0.9100
0.8000 -0.1043 0.1487 0.9200 -0.0173 0.1050 0.9800
000 0.0075 0.0256 09300 0.0018 0.0148 0.9400
0.00  0.0085 0.0445 0.9700 0.0040 0.0170 0.9400
0.5657 -0.0851 0.1680 0.9300 -0.0323 0.1255 0.9700
0.00  0.0049 0.0306 0.9600 0.0032 0.0154 0.9200
0.00  0.0076 0.0414 0.9300 0.0053 0.0172 0.9600
000 00047 00277 09100 0.0022 0.0151 0.9300
0.00 00100 0.0332 0.9500 0.0032 0.0151 0.9300
0.9016 -0.0727 0.0785 0.8200 -0.0552 0.0573 0.9300
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Table 1 Bias (BIAS), sample standard deviation (SSD), and empirical coverage probability (ECP)
at the 95% confidence level for the locations & = (1,12, ..., g, scale matrix 2 = {mij}, with
i,j=1,2,...,dand i < j, tail parameter & = 1.70 and skewness parameter &;, i = 1,2, ...,d of the
Skew Elliptical Stable distribution in dimension 5. The results reported above are obtained using
100 replications.

in Wang (2015) and reported below

=
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0.117 1.554 0 0 0
0 0 03620002 0
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As regards the simulated example in dimension m = 12 we plot in Figure 1 the
images displaying the band structure of the true estimated scale matrices are very

close.
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Fig. 1 Images displaying the band structure of the true (left) and estimated (right) scale matrices
of the simulated example in dimension m = 12.

5 Conclusion

In this paper the problem of parameter estimation and inference of Skew—Stable
distributions has been approached using the multivariate method of simulated quan-
tiles. Moreover, since as the number of dimensions increases the course of di-
mensionality problem prevents any effective inferential procedure we introduce the
sparse-MMSQ estimator and we prove that the estimator enjoys the oracle proper-
ties under mild regularity conditions. The MMSQ and the sparse-MMSQ have been
applies to the problem of estimating the parameters of the multivariate Skew—Stable
distribution introduced by Branco and Dey (2001). Our simulation results show that
the proposed methodology effectively achieve sparse estimation of the scale param-
eter.
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