We introduce a class of stochastic Allen–Cahn equations with a mobility coefficient and colored noise. For initial data with finite free energy, we analyze the corresponding Cauchy problem on the d-dimensional torus in the time interval [0, T]. Assuming that d ≤ 3 and that the potential has quartic growth, we prove existence and uniqueness of the solution as a process u in L^2 with continuous paths, satisfying almost surely the regularity properties u ∈ C([0, T];H^1) and u ∈ L^2([0, T];H^2).

Stochastic Allen–Cahn equation with mobility / Bertini Malgarini, Lorenzo; Butta', Paolo; Pisante, Adriano. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 24:5(2017). [10.1007/s00030-017-0477-3]

Stochastic Allen–Cahn equation with mobility

BERTINI MALGARINI, Lorenzo;BUTTA', Paolo;PISANTE, Adriano
2017

Abstract

We introduce a class of stochastic Allen–Cahn equations with a mobility coefficient and colored noise. For initial data with finite free energy, we analyze the corresponding Cauchy problem on the d-dimensional torus in the time interval [0, T]. Assuming that d ≤ 3 and that the potential has quartic growth, we prove existence and uniqueness of the solution as a process u in L^2 with continuous paths, satisfying almost surely the regularity properties u ∈ C([0, T];H^1) and u ∈ L^2([0, T];H^2).
2017
stochastic PDEs; Allen–Cahn equation; Well-posedness
01 Pubblicazione su rivista::01a Articolo in rivista
Stochastic Allen–Cahn equation with mobility / Bertini Malgarini, Lorenzo; Butta', Paolo; Pisante, Adriano. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - STAMPA. - 24:5(2017). [10.1007/s00030-017-0477-3]
File allegati a questo prodotto
File Dimensione Formato  
Bertini_Stochastic-Allen-Cahn-equation_2017.pdf

accesso aperto

Note: File PDF della versione Post-print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 444.71 kB
Formato Adobe PDF
444.71 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1012056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact