This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches.

Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control / Pietrabissa, Antonio; Liberati, Francesco. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - ELETTRONICO. - 92:5(2019), pp. 1001-1014. [10.1080/00207179.2017.1378441]

Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control

Pietrabissa, Antonio
;
Liberati, Francesco
2019

Abstract

This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches.
2019
Markov decision processes; reinforcement learning; Voronoi partitioning; wireless sensor networks; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition
01 Pubblicazione su rivista::01a Articolo in rivista
Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control / Pietrabissa, Antonio; Liberati, Francesco. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - ELETTRONICO. - 92:5(2019), pp. 1001-1014. [10.1080/00207179.2017.1378441]
File allegati a questo prodotto
File Dimensione Formato  
Pietrabissa_Dynamic-distributed-clustering_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Contatta l'autore
Pietrabissa_postprint_Dynamic-distributed-clustering_2019.pdf

accesso aperto

Note: DOI: 10.1080/00207179.2017.1378441
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.4 MB
Formato Adobe PDF
3.4 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1003014
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact