This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches.
Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control / Pietrabissa, Antonio; Liberati, Francesco. - In: INTERNATIONAL JOURNAL OF CONTROL. - ISSN 0020-7179. - ELETTRONICO. - 92:5(2019), pp. 1001-1014. [10.1080/00207179.2017.1378441]
Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control
Pietrabissa, Antonio
;Liberati, Francesco
2019
Abstract
This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches.File | Dimensione | Formato | |
---|---|---|---|
Pietrabissa_Dynamic-distributed-clustering_2019.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.27 MB
Formato
Adobe PDF
|
1.27 MB | Adobe PDF | Contatta l'autore |
Pietrabissa_postprint_Dynamic-distributed-clustering_2019.pdf
accesso aperto
Note: DOI: 10.1080/00207179.2017.1378441
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.4 MB
Formato
Adobe PDF
|
3.4 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.