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Abstract 

This paper present two dynamic and distributed clustering algorithms for Wireless Sensor 

Networks (WSN). Clustering approaches are used in WSNs to improve the network lifetime and 

scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head 

(CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH 

node positions, the algorithm is proved to converge to a specific partition of the mission area, the 

generalized Voronoi Tessellation, in which the loads of the CH nodes are balanced. Conversely, if the 

CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load balancing 

objective: a reinforcement learning approach is used to dynamically vary the mission space partition by 

controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the 

approaches. 

Keywords: Voronoi partitioning, wireless sensor networks, Markov decision processes, 

reinforcement learning. 

1 Introduction 

Wireless Sensor Networks (WSNs) are basically composed by sensor nodes, spread over the 

monitored area in order to collect the measures of interest, and by data sink nodes, which collect the 

data transmitted by the sensor nodes, process and aggregate the received measures and convey the 

elaborated data to a remote data centre. The management of WSNs is a widely-researched topic in the 

literature, since an efficient operation of WSNs is relevant to many applications, such as, e.g., 

environmental sensing [1], critical infrastructure monitoring [2], health care monitoring [3], process 

control monitoring [4], air quality monitoring [5], networked control systems [6]. One of the main 

challenges in WSN management is the energy consumption of the nodes, which limits the WSN lifetime. 

A common strategy to maximize the WSN lifetime is to group the WSN nodes into clusters. Data 
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processing operations, such as data filtering, data aggregation and data fusion, are carried out in each 

cluster to reduce the load of data transmitted over the WSN, and, consequently, the overall energy 

consumption. The node responsible for gathering and processing the cluster data is the so-called cluster 

head (CH) node. 

WSN clustering can be classified according to many characteristics (see, e.g., [7] and the references 

therein). In this paper, we are interested in dynamic clustering algorithms with a fixed number of CH 

nodes, with either fixed or mobile CH and sensor nodes, aimed at balancing the load among the CH 

nodes during the WSN lifetime. The paper does not take into account other aspects of WSNs which 

depend on the specific implementation, such as: the presence of algorithms to elect the CH nodes among 

the sensor nodes, the characteristics of the communication among the nodes and of the implemented 

routing algorithm, the data processing algorithms within the CH nodes. For the same reason, only the 

load balancing objective is considered; for instance, to maximize the WSN lifetime the objective might 

be to balance of the leftover energy among the CH nodes (and not their load only), but the energy 

consumption depends on the characteristics of the specific WSN implementation, such as the fact that 

CH nodes act as data relays or not, the energy occurring to move in case of mobile CH nodes, the data 

processing algorithms within the CH nodes and so on [8]. 

Generally, clustering is obtained by defining a region of competence for each CH. The first 

algorithm proposed in this paper deals with mobile CH nodes. We assume that the sensor nodes are 

associated to the nearest CH node; the objective is then to move the CH nodes in such a way that the set 

of CH nodes induce a balanced partition of the mission area. A discrete-time, distributed dynamic 

clustering algorithm is proposed for mobile WSNs, which lets the partition induced by the CH nodes 

converge to the so-called generalized Centroidal Voronoi Tessellation (CVT), with favorable 

characteristics in terms of load balancing. The control actions of the algorithm are such that, if the 

environment is stationary, the positions of the CH nodes are proved to converge to the CVT. 

If the CH nodes are fixed, a dynamic clustering algorithm is proposed, in which the CH node 

regions are varied by opportunely controlling the weights of a weighted centroidal Voronoi tessellation. 

The system is modelled as a Markov decision process (MDP) and the control actions (i.e., the way the 

weights are varied) are computed by a reinforcement learning (RL) algorithm with the objective of 

minimizing a cost representing the load unbalancing among the CH nodes. 

The paper is organized as follows: Section 2 presents a literature review and outlines the paper 

contributions; Section 3 summarized the basic concepts and definitions of Voronoi partitioning, MDP 

and RL; the proposed dynamic CVT and weighted Voronoi algorithms are analyzed in Sections 4 and 

5, respectively; Section 6 collects the simulation results; finally, Section 7 draws the conclusions and 

outlines the future works. 



2 Related works and paper contributions 

2.1 Related works 

Dynamically modifying the mission space partitioning (i.e., the composition of the WSN clusters) 

can be exploited to ensure balancing and prolong WSN operations. The main degrees of freedom for 

WSN balancing are dynamic clustering, CH node migration across the mission space and CH node role 

migration among nodes (i.e., dynamic CH node election). A rich variety of algorithms have been 

proposed for each of these topics, often in combined forms. In this paper, we investigate CH node 

migration and dynamic clustering concepts. The reader interested in CH node election algorithms is 

referred to [7,9–11], where the most popular algorithms are explained, such as: LEACH [12], which 

introduces a random election mechanism, HEED [13], an extension of LEACH including among the 

election parameters also the residual energy of the node, EECS [14], a LEACH-like algorithm for single-

hop WSNs, which introduces a distance-based metric to balance load among cluster head, and many 

others. EECS is interesting in that it promotes unequal clustering, meaning that the clusters far away 

from the WSN sink (or gateway) node tend to be smaller compared to closer ones (CH nodes far from 

the sink node spend more energy to transmit data, in single-hop WSNs). As a result [14], EECS manages 

to prolong network lifetime (the time until the first node runs out of energy) compared to LEACH and 

HEED. LEACH extensions have been designed to specifically tackle nodes mobility and the associated 

issue of increased packet loss. In LEACH-M [15], a mobility metric is proposed. In [16], the CH election 

is based on node residual energy and mobility; node clustering is then based on the connection time with 

the CH, the distance from the CH, the node residual energy and the node degree of the CH. Another 

recent extension of LEACH for mobile networks is LEACH-MF [17], which enhances the fuzzy 

inference system proposed in [18] to improve the CH selection phase for mobile scenarios, by taking 

into account the residual energy and the moving speed.  

Rather than dealing with CH node role migration, in this paper we investigate balancing via i) 

navigation of the CH nodes in the mission space, in the context of mobile WSNs (Section 4) and ii) via 

dynamic modification of the cluster extensions, in a context of fixed CH nodes (Section 5). 

Several works have been proposed in literature dealing with balancing through CH node mobility. 

A method is proposed in [19], which overcomes previous strategies based on random movements by 

investigating three different mobility strategies, one based on movement towards energy-dense regions 

of the WSN, a second one promoting CH migration towards the WSN regions generating more events 

and a third one realizing a hybrid approach. The authors show that the hybrid approach is the most 

effecting in prolonging the operative life of the WSN, up to 75% more with respect to standard 

algorithms such as LEACH. The CH node mobility algorithm proposed in this paper is based on the 

concept of Voronoi partitioning [20]. Voronoi WSN partition has been already investigated in some 

works, since the technique appears well-suited to support information fusion algorithms and 

transmission power control. Reference [21] presents a distributed approach for explicitly computing the 



Voronoi partition of the WSN sensor field (i.e., of the area monitored by the WSN) based on geometrical 

considerations and aimed at minimizing the energy consumption. Reference [22] presents an offline 

(i.e., static) distributed algorithm for achieving energy-aware Voronoi WSN partitioning (off-line 

partitioning is achieved based on the knowledge of the location of nodes deployment). A centralized 

fuzzy C-means clustering algorithm is presented in [23], in which the fuzzy membership functions are 

based on the Voronoi partitioning of the WSN, computed relying on a distance metric including both 

the Euclidean distance and the residual energy of the nodes. Reference [24] presents a Voronoi-based 

clustering algorithm in which mobile CH nodes are pushed by “virtual forces” computed to minimize 

the variance of the cluster dimensions and the energy depletion of the CH nodes. The algorithm in [24] 

requires the explicit computation of the Voronoi diagrams after each iteration. 

Researchers have realised that both the CH node location (or election) and the cluster sizes are 

critical to the WSN lifetime. This is because of the combined effect of the intra-cluster data processing 

load and the inter-clusters data forwarding load (in multi-hop WSNs), which have both to be sustained 

by the cluster heads. The greater the cluster size is, the greater will be the data processing load; the closer 

the CH node is to the base station, the greater will be the amount of data from other CH nodes that the 

CH node in question will have to forward to the base station. Hence, researchers have studied algorithms 

to control and balance the cluster sizes. One of the earliest works in this sense is [25], which presents a 

static clustering which takes into account the interaction between routing and clustering; an optimization 

problem is defined to find the optimal power allocation strategy. In [26], a genetic algorithm is used to 

find a static association between each sensor node and a CH node, optimal with respect to the modelled 

energy consumption; the configuration is kept for the whole network lifetime. Reference [27] proposes 

a dynamic energy-aware distributed topology control, in which CH nodes are assumed to be fixed and 

the objective is to control the cluster sizes in order to balance the CH node energy. The algorithm starts 

by computing the initial partition of the mission area as the Voronoi tessellation induced by the CH node 

positions. Then, an iterative algorithm changes the partition by moving the vertices of the regions 

according to heuristic rules taking into account the position and the leftover energy of the adjacent CH 

nodes. No convergence results to favourable configurations are given. In [28], a dynamic clustering 

scheme for WSN lifetime optimization is proposed, which requires periodically solving a non-linear 

programming problem to regulate the radius of each cluster. 

2.2 Paper contributions 

The main innovation proposed by this paper in the context of WSN clustering is the concept of 

dynamically controlling the Voronoi partition achieved by the CH nodes, while guaranteeing the 

convergence to a balanced clustering configuration. Two discrete-time control methodologies are 

proposed, the former suitable for mobile WSNs, the latter for fixed WSNs. Both algorithms are 

distributed and require the execution of simple update rules by the CH nodes, without the need of 

explicitly computing the Voronoi partition at any time-step. 



The first algorithm, inspired by the data-sink node election method developed in [9] for fixed 

WSNs, and by the algorithm for multi-vehicle routing in [29], proposes a new approach to move mobile 

CH nodes in such a way that, in stationary environments, the network partitioning converges towards a 

generalized CVT, which takes into account both the position and the load generated by each sensor 

node. In contrast with the algorithms in [21], [22], [23], [24], the proposed one does not require to 

explicitly compute the partition at each time-step. 

The second algorithm, based on a MDP model of the WSN and on a RL algorithm, proposes a new 

approach to vary the partition of the mission area in static WSNs. The mission area is partitioned 

according to a weighted Voronoi tessellation. The resulting clusters are unequal, as in [14], [27], [28], 

with the key differences that the proposed algorithm i) dynamically sets the weights without the need of 

solving optimization problems at each time-step, ii) in stationary environments, lets the partition 

converge to the weighted Voronoi tessellation which minimizes the mean squared error between the 

load of each CH nodes and the average load of the CH nodes. 

3 Preliminaries  

Sections 3.1 and 3.2 present some notions on Voronoi partitioning, on MDP and on reinforcement 

learning. Standard notation is used throughout the paper, with vectors denoted with bold characters, and 

with |⋅| denoting the cardinality operator.  

3.1 Voronoi Partitioning 

Table 1 summarizes the nomenclature used to define the Voronoi partitioning problem. 

 

𝒜 Convex Euclidean domain/mission area 

𝑑(𝒑, 𝒒) Euclidean distance between two points 𝒑, 𝒒 ∈ 𝒜 

𝑑𝐴𝑊
𝒘 (𝒑, 𝒒) Weighted Euclidean distance between two points 𝒑, 𝒒 ∈ 𝒜, with weight vector 𝒘 

𝜂 Density function with discrete support 

𝜑 Density function 

𝒢 Set of the generator points of the Voronoi tessellation 

𝑚𝜑 Generalized centroid computed with respect to the density function 𝜑  

𝑚𝜂 Generalized centroid computed with respect to the density function 𝜂  

𝒫𝒢  Voronoi partition (or tessellation) generated by the generating points in 𝒢 

𝒫𝒢(𝒒) Voronoi region associated to generating point 𝒒 ∈ 𝒢 

𝒫𝒢
𝒘(𝒒) Weighted Voronoi region associated to generating point 𝒒 with weights vector w 

𝒫𝒢
𝒘 Weighted Voronoi tessellation generated by the points in 𝒢 with weight vector w 

𝒘 = (𝑤(𝒒))
𝒒∈𝒢

 Weights vector of the weighted Voronoi partition 

Table 1: Voronoi tessellation nomenclature 



Mission space partitioning relies on the definition of Voronoi partition. Let us consider a convex 

Euclidean domain 𝒜 ∈ ℝ2, and a set 𝒢 of points in 𝒜. The Voronoi regions with respect to the set 𝒢 is 

defined as: 

𝒫𝒢(𝒒) = {𝒑 ∈ 𝒜 ∶ 𝑑(𝒑, 𝒒) ≤ 𝑑(𝒑, 𝒒′), ∀𝒒′ ∈ 𝒢}, ∀𝒒 ∈ 𝒢,  (1) 

where 𝑑(𝒑, 𝒒) = ‖𝒑 − 𝒒‖2 is the Euclidean distance between 𝒑 and 𝒒. Equation (1) states that a point 

𝒑 ∈ 𝒜 belongs to the Voronoi region 𝒫𝒢(𝒒) if it is such that the distance between 𝒑 and 𝒒 is not greater 

than the distance between 𝒑 and any other point 𝒒′ ∈ 𝒢. The Voronoi regions 𝒫𝒢(𝒒) are bounded and 

convex, and are such that ⋃ 𝒫𝒢(𝒒)𝑞∈𝒢 = 𝒜 and ⋂𝒒∈𝒢𝒫𝒢(𝒒) is a set of zero measure, i.e., they form a 

partition of the mission space 𝒜, referred to as Voronoi partition or tessellation, denoted with 𝒫𝒢 =

{𝒫(𝒒)}𝒒∈𝒢 . The points 𝒒 ∈ 𝒢 are the so called generating points, or generators, of the Voronoi partition. 

Depending on the position of the generating points in the mission space 𝒜, specific partitions can 

be generated. In particular, in Section 4 we are interested in the generalized Centroidal Voronoi 

Tessellation (CVT), whose generating points are the centers of mass of the Voronoi regions, and which 

is regarded as an optimal partition corresponding to an optimal distribution of generators [20]: 

 

Definition 1: Let the density function 𝜑: 𝒜 → [0,1] be an absolutely continuous spatial distribution, 

with bounded and convex support in 𝒜 5.The generalized centroid of the set 𝒫𝒢(𝒒) ⊆ 𝒜 with respect to 

the density function 𝜑 is 𝑚𝜑 = argmin
𝒑∈ℝ2

∫ 𝑑(𝒔, 𝒑)2
𝒫𝒢(𝒒)

𝜑(𝒑)𝑑𝒑. ∎ 

 

In analogy with Definition 1, in the discrete spatial distribution case, the generalized centroids are 

defined as follows: 

 

Definition 2. The generalized centroid of a set 𝒫 ⊆ 𝒜 with respect to a discrete density function 

𝜂: 𝒜 → [0,1] with support given by a finite, discrete set 𝒱 ⊆ 𝒜 is 

𝑚𝜂 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒔∈ℝ2

∑ 𝑑(𝒔, 𝒑)2
𝒑∈𝒱∩𝒫 𝜂(𝒑). (2) 

 ∎ 

The resulting Voronoi partition is the generalized CVT: 

 

Definition 3: A Voronoi tessellation 𝒫𝒢 = {𝒫𝒢(𝒒)}
𝒒∈𝒢

 of a convex set 𝒜 is called a generalized 

Centroidal Voronoi Tessellation with respect to the density function 𝜑 (𝜂), if each generator 𝒒 ∈ 𝒢 is 

equal to the generalized centroid of its partition 𝒫𝒢(𝒒) with respect to 𝜑 (𝜂).  ∎ 

 

5 I.e., there is a bounded and convex subset 𝒬 ⊆ 𝒜 s.t. 𝜑(𝒑) > 0 if 𝒑 ∈ 𝒬, and 𝜑(𝒑) = 0 if 𝒑 ∈ 𝒜 ∖ 𝒬. 



 

Different Voronoi tessellations can be obtained by defining different distances (see, e.g., [30]), 

which, however, may present some drawbacks depending on the specific use-case: e.g., multiplicatively 

weighted Voronoi diagrams, obtained by dividing the Euclidean distance between a point and a 

generator point by a positive weight associated to the generator, may have disconnected partitions; in 

power diagrams, where the distance between a point and a generator point is defined as the squared 

Euclidean distance minus the generator weight, the generator may lie outside its own region. The 

clustering algorithm in Section 5 makes use of the additively weighted (AW) Voronoi tessellation, where 

the distance is defined as 𝑑𝐴𝑊
𝒘 (𝒑, 𝒒) ≔ ‖𝒑 − 𝒒‖2 − 𝑤𝒒, with 𝑤𝒒 ≥ 0, ∀𝒑 ∈ 𝒜, ∀𝒒 ∈ 𝒢. Accordingly, 

the AW Voronoi regions, which depend on the weights vector, are defined as: 

𝒫𝒢
𝒘(𝒒) = {𝒑 ∈ 𝒜 ∶ 𝑑𝐴𝑊

𝒘 (𝒑, 𝒒) ≤ 𝑑𝐴𝑊
𝒘 (𝒑, 𝒒′), 𝒘 = (𝑤𝒒′)

𝒒′∈𝒢
, 𝑤𝒒′ ≥ 0, ∀𝒒′ ∈ 𝒢} , ∀𝒒 ∈ 𝒢. (3) 

The AW Voronoi tessellation is suitable for a WSN scenario, given that the generators lie within their 

region and there are no ‘holes’ in the regions. 

3.2 Markov Decision Processes and Reinforcement Learning 

Table 2 summarizes the nomenclature used to define the MDP/RL approach. 

 

𝑐: 𝒳 × 𝒰 × 𝒳 → ℝ≥0 Cost function of the MDP 

𝐶Σ,𝜋 Expected discounted total cost under policy 𝜋 with initial state distribution Σ 

𝜀 Exploration rate  

𝜆𝑡 Learning rate at time 𝑡 

𝑝𝒙𝒙′(𝒖) Transition probability from state 𝒙 to state 𝒙′ when action 𝒖 is chosen 

𝜋: 𝒳 → 𝒰 Policy 

𝑄𝜋(𝒙, 𝒖) Action-value function for state 𝒙, action 𝒖 and policy 𝜋 

Σ Initial state distribution 

𝑇 Transition probability matrix of the MDP 

𝒖 = 𝜋(𝒙) ∈ 𝒰 Action chosen in state 𝒙 under policy 𝜋 

𝒖𝑡 Action chosen at time 𝑡 

𝒰 Action space of the MDP 

𝑉𝜋(𝒙, 𝒖) Value function for state 𝒙 and policy 𝜋 

𝒘𝒙 = (𝑤𝒙(𝑗))
𝑗∈𝒞

 Weight vector in state 𝒙 ∈ 𝒳  

𝒙𝑡 State of the system at time 𝑡 

𝒳 State space of the MDP 

Table 2: MDP/RL nomenclature 



A MDP is a discrete-time stochastic control process defined by the tuple {𝒳, 𝒰, 𝑇, 𝛴, 𝑐, 𝛾}, where 

𝒳 is finite state set, 𝒰 is finite action set, 𝑇 ∈ [0,1]|𝒳|×|𝒰|×|𝒳| is the transition probability matrix, Σ is 

the initial state distribution, 𝑐: 𝒳 × 𝒰 × 𝒳 → ℝ≥0 is the cost function and 𝛾 ∈ (0,1) is the discount 

factor, weighting immediate vs. future costs. Under the Markovian (or memory-less) property and under 

the stationary distribution assumption, the transition probabilities are stationary and the generic element 

𝑝𝒙𝒙′(𝒖) of the matrix 𝑇 describes the probability that the system trajectory transits from state 𝒙 to 𝒙′ 

when action 𝒖 is chosen. A policy 𝜋: 𝒳 → 𝒰 is a mapping from the state space to the action space, i.e., 

𝜋(𝒙) = 𝒖 ∈ 𝒰, ∀𝒙 ∈ 𝒳 6. In this paper we consider the stationary, infinite-horizon case under the total 

discounted cost criterion [31], in which a policy is optimal if it minimizes the expected cost: 

𝐶Σ,𝜋(𝒙) ≔ 𝐸𝜋{∑ 𝛾𝑡𝑐(𝒙𝑡 , 𝒖𝑡 , 𝒙𝑡+1)𝑡=0,1,…,∞ }, ∀𝒙 ∈ 𝒳, 

where 𝒙𝑡 and 𝒖𝑡 are the state visited and the action chosen at time 𝑡, respectively, 𝐸𝜋{⋅} denotes the 

expected value under policy 𝜋 with initial state distribution Σ. The value function 𝑉𝜋(𝒙) is the expected 

discounted cost starting from 𝒙 and following policy 𝜋 thereafter; the action-value function 𝑄𝜋(𝒙, 𝒖) is 

the expected discounted cost starting from 𝒙, choosing action 𝒖 and following policy 𝜋 thereafter: 

𝑄𝜋(𝒙, 𝒖) ≔ 𝐸Σ,𝜋{∑ 𝛾𝑡(𝒙𝑡 , 𝒖𝑡 , 𝒙𝑡+1)𝑡=0,1,…,∞ }. 

Model-based and model-free methods exist to solve MDP (i.e., to find an optimal policy). Dynamic 

programming algorithms (see, e.g., [32]) are model-based methods, since they need a complete 

environment description (i.e., the transition probabilities must be known in advance) and are able to find 

an optimal policy iteratively; beside the need of a model, they are not scalable since the state space 

dimension explodes in practical scenarios (the so-called curse of dimensionality [33]). 

RL algorithms are model-free methods which converge to an optimal policy under the hypothesis 

that every state is visited an infinite number of times (see, e.g., [33]); however, RL algorithms are able 

to fast converge to effective sub-optimal policies in many practical problems. Let the system be in a 

generic state 𝒙 ∈ 𝒳; RL algorithms chose an action 𝒖 ∈ 𝒰 based on a given control rule, and then 

observe the next state 𝒙′ ∈ 𝒳 and the cost 𝑐(𝒙, 𝒖, 𝒙′) incurred after the transition. Based on the 

observations, the RL algorithms update the value function estimate 𝑉(𝒙) or the action-value function 

estimate 𝑄(𝒙, 𝒖). Different RL methods exist, which differ by the rule used to decide the control action 

and by the rule used to update the value (or action-value) function. In this paper (not focused on RL 

solutions), the widely-used Q-learning algorithm is used, but more complex RL algorithm can be used 

(e.g., SARSA(λ), as in [34], actor-critic methods [35]). The Q-Learning update rule is the following one: 

𝑄(𝒙𝑡 , 𝒖𝑡) ← (1 − 𝜆𝑡(𝒙𝑡))𝑄(𝒙𝑡 , 𝒖𝑡) + 𝜆𝑡(𝒙𝑡) (𝑐(𝒙𝑡 , 𝒖𝑡 , 𝒙𝑡+1) + 𝛾 𝑚𝑖𝑛
𝒖′∈𝒰

𝑄(𝒙𝑡+1, 𝒖′)), (4) 

 

6 Policies in which one action per state is chosen with probability 1 are called deterministic policies. Considering 

deterministic policies only is not a limitation in unconstrained MDPs, since a deterministic optimal policy always exists [35]. 



where the learning rate 𝜆𝑡(𝒙𝑡) > 0 is the key parameter for the algorithm convergence: if 

∑ 𝜆𝑡(𝒙𝑡)𝑡=1,…,∞ = ∞ and ∑ 𝜆𝑡(𝒙𝑡)2
𝑡=1,…,∞ < ∞, the estimate (4) converges to the optimal action-value 

function as 𝑡 → ∞ ([35]). In state 𝒙, the action is then decided based on the current estimate of the state-

action value function; the current best action is the one corresponding to the minimum Q value in state 

𝒙. To guarantee a certain degree of exploration of the state space set, an ε-greedy rule is followed: the 

best action is chosen by the controller with probability 1 − 𝜀, where 𝜀 ∈ (0,1) is the exploration rate; 

with probability 𝜀 a random action is chosen: 

𝒖𝑡 = {
𝑎𝑟𝑔𝑚𝑖𝑛𝒖∈𝒰𝒙

{𝑄(𝒙𝑡 , 𝒖)} with probability (1-𝜀)

𝑟𝑎𝑛𝑑{𝒖 ∈ 𝒰} with probability 𝜀
. (5) 

A large value of 𝜀 guarantees that different policies with respect to the current best one are explored, 

and thus avoids that the system remains stuck in a local minimum. A small value of ε, on the other hand, 

lets the controller choose the best action based on the current estimates of the action-value function and 

favors the exploitation of the current best policy. 

Several extensions to non-stationary environments have been proposed in the literature. In this 

paper, the update rule of [36], tailored to non-stationary environments, is used: 

𝑄(𝒙𝑡 , 𝒖𝑡)  

← (1 − 𝜆𝑡)1/𝜋(𝒙𝑡)𝑄(𝒙𝑡 , 𝒖𝑡) + (1 − (1 − 𝜆𝑡)1/𝜋(𝒙𝑡)) (𝑐(𝒙𝑡 , 𝒖𝑡 , 𝒙𝑡+1) + 𝛾 𝑚𝑖𝑛
𝒖′∈𝒰

𝑄(𝒙𝑡+1, 𝒖′)). 
(6) 

4 Dynamic Clustering for Mobile WSN 

Table 3 summarizes the nomenclature used to define the dynamic Voronoi partitioning algorithm. 

 



ℬ𝑡𝑘
(𝑗) Multiset collecting all the nodes that have been associated to CH node 𝑗 up to time 𝑡𝑘 

𝒞 Set of the CH nodes 

ℱ𝑡 = {𝒑𝑡(𝑖)}𝑖∈𝒱 Set of sensor node positions at time 𝑡 

�̂� = {�̂�(𝑗)}𝑗∈𝒞 Set of the limit reference positions of the generator points (CH nodes) 

𝒢𝑡 = {𝒒𝑡(𝑖)}𝑖∈𝒞 Set of the generator point (CH nodes) positions at time 𝑡 

𝜇𝑡𝑘
(𝑖, 𝑗) Multiplicity of sensor node 𝑖 in ℬ𝑡𝑘

(𝑗) (i.e., the number of times 𝑖 appears in ℬ𝑡𝑘
(𝑗)) 

𝒩𝑡𝑘
(𝑗) Set of sensor nodes associated to CH node 𝑗 at time 𝑡𝑘 

𝒑𝑡(𝑖) Position of sensor node 𝑖 at time 𝑡 

�̂�(𝑗) Limit reference position of the generator point (CH node) 𝑗 

𝒒𝑡(𝑗) Position of the generator (CH node) 𝑗 at time 𝑡 

�̅�(𝑖) Expected transmission rate of node 𝑖 

𝑟𝑡(𝑖) Transmission rate of node 𝑖 at time 𝑡 

𝑟𝑡𝑘
(𝑖) Average transmission rate of the sensor node 𝑖 during round 𝑘 

𝜌𝑡𝑘+1
(𝑗) Cumulative transmission rate of the sensor nodes associated to the CH node 𝑗 up to step 𝑡𝑘 

𝑡𝑘 Time instant of the 𝑘-th round  

𝑡𝑛(𝑖,𝑗) Time instant when sensor node 𝑖 was included in ℬ𝑡 𝑘
(𝑗) for the 𝑛-th time 

𝒱 Set of sensor network nodes 

𝒱𝒢  Partition of the set of sensor network nodes 𝒱 according to the generator points in 𝒢 

𝒱𝒢(𝑗) Subset of sensor network nodes in the partition 𝒫𝒢(𝒒(𝑗)) 

Table 3: Dynamic Voronoi tessellation nomenclature 

Let the mission space be a bounded, convex Euclidean domain 𝒜 ⊂ ℝ2. The sensor network is 

deployed on the mission area 𝒜; let 𝒱 be the set of generally mobile network nodes. The position of the 

node 𝑖 at time 𝑡 is defined by the time-varying mapping function 𝒑𝑡: 𝒱 → 𝒜, and ℱ𝑡 = {𝒑𝑡(𝑖)}𝑖∈𝒱 

denotes the set of node positions at time 𝑡. Finally, let 𝒞 denote the set of the CH nodes in the sensor 

network. The position of the generic CH node 𝑗 at time 𝑡 is defined by the mapping function 𝒒𝑡: 𝒞 → 𝒜, 

and 𝒢𝑡 = {𝒒𝑡(𝑗)}𝑗∈𝒞 is the set of CH node positions. 

4.1 Dynamic CVT Algorithm 

We describe in the following the proposed clustering algorithm for network balancing in presence 

of mobile nodes and variable transmission data rates. The algorithm relies on the periodical Voronoi 

partitioning of the network, with each CH node playing the role of a Voronoi region’s generator. A 

proper update rule for the CH node target positions is provided in the following in order to keep the 

network clustering balanced in time. Target CH node positions are computed periodically; the time scale 

is then discretized, and, during every round, it is assumed that the CH nodes can reach the target positions 

by moving on the mission space. The proposed algorithm is distributed, since each CH node takes the 

control decisions independently of the other CH nodes. The communication among the CH nodes is kept 



limited to the communication of their target position at every round, i.e., each time a new target position 

computation is made. 

Let 𝜏𝑟𝑜𝑢𝑛𝑑 denote the duration of each round, and let 𝑡𝑘 be the time instant corresponding to the 

beginning of round 𝑘: 𝑡𝑘 = 𝑘𝜏𝑟𝑜𝑢𝑛𝑑. We assume that, at time 𝑡𝑘, each node 𝑖 ∈ 𝒱 is associated to one 

CH node; thus, we also assume an initial clustering of the network: the initial association of sensor nodes 

to CH nodes in round 0 can be chosen randomly; however, a reasonable initialization is to associate 

each sensor node at time 𝑡0 to the nearest CH node. At the beginning of each round 𝑘, each sensor node 

sends to all the CH nodes (e.g., by flooding the network) its position 𝒑𝑡𝑘
(𝑖) and its average transmission 

rate during the 𝑘-th round, denoted with 𝑟𝑡𝑘
(𝑖). The CH nodes also exchange among them their position 

set 𝒢𝑡𝑘
.  

Given the position sets ℱ𝑡𝑘
 and 𝒢𝑡𝑘

, each CH node 𝑗 ∈ 𝒞 computes which are its associated sensor 

nodes (i.e., the nodes whose distance to 𝑗 is smaller than the distances to the other CH nodes) and collects 

them in the neighbor set 𝒩𝑡𝑘
(𝑗) ≔ {𝑖 ∈ 𝒱: 𝑑 (𝒑𝑡𝑘

(𝑖), 𝒒𝑡𝑘
(𝑗)) ≤ 𝑑 (𝒑𝑡𝑘

(𝑖), 𝒒𝑡𝑘
(𝑗′)) , ∀𝑗′ ∈ 𝒞}. Each 

CH node stores the past and the current neighbor sets in the multiset ℬ𝑡𝑘
(𝑗) ≔ ℬ𝑡𝑘−1(𝑗) ⊎ 𝒩𝑡𝑘

(𝑗), with 

ℬ𝑡0
(𝑗) ≔ 𝒩𝑡0

(𝑗). ℬ𝑡𝑘
(𝑗) is a multiset in the sense that each node can appear in ℬ𝑡𝑘

(𝑗) more than once; 

⊎ denotes the operation of multiset union 7. The number of times a node 𝑖 appears in ℬ𝑡𝑘
(𝑗) is called the 

multiplicity of the node, and is denoted in the following with 𝜇𝑡𝑘
(𝑖, 𝑗). The multiplicity of a node is in 

practice equal to the number of times the node was associated to the CH node 𝑠 up to time 𝑡𝑘. With little 

abuse of notation, let 𝑡𝑛(𝑖,𝑗) denote the time instant when node 𝑖 was associated to ℬ𝑡(𝑗) for the 𝑛-th 

time, i.e., raising the multiplicity of node 𝑖 in ℬ𝑡(𝑗) to 𝑛. As already specified, each time an element is 

associated to ℬ𝑡𝑘
(𝑗), the CH node also keeps trace of the node transmission rate and position. In the 

following, 𝒑𝑡𝑛(𝑖,𝑗)
(𝑖) and 𝑟𝑡𝑛(𝑖,𝑗)

(𝑖), will denote, respectively, the position and the transmission rate of 

the node 𝑖 when multiplicity 𝑛 was gained in ℬ𝑡(𝑗). 

The new target position 𝒒𝑡𝑘+1
(𝑗) of the CH node 𝑗, that is, the point in the region which the CH 

node 𝑗 has to reach at time 𝑡𝑘+1, is then computed as the reference point of the multiset ℬ𝑡𝑘
(𝑖), defined 

as the point which minimizes the average weighted squared distance to the sensor nodes in ℬ𝑡𝑘
(𝑗), with 

each squared distance being weighted by the respective node’s transmission rate: 

𝒒𝑡𝑘+1
(𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒔∈ℝ2
{∑

1

𝑡𝑘
∑ 𝑑 (𝒔, 𝒑𝑡𝑛(𝑖,𝑗)(𝑖))

2
𝑟𝑡𝑛(𝑖,𝑗)

(𝑖)
𝜇𝑡𝑘

(𝑖,𝑗)

𝑛=1𝑖∈ℬ𝑡𝑘
(𝑗) } , ∀𝑗 ∈ 𝒞.  (7) 

 

7 Multisets, also commonly known as bags, are unordered collections of items which may contain duplicates. For 

example, the multiset {1,1,1,2,3} is equivalent to the multiset {1,2,1,1,3}, but differs from the multiset (also a set in this case) 

{1,2,3} because of the multiplicity of element 1. The multiset 𝐴 = 𝐴1 ⊎ 𝐴2 by definition contains only the elements that occur 

either in 𝐴1 or in 𝐴2, and the multiplicity of each element in 𝐴 is the multiplicity of that element in 𝐴1 plus the multiplicity of 

that element in 𝐴2, e.g., {1,1,1,2,3} ⊎ {1,2,3} = {1,1,1,2,3,1,2,3}. 



(Note that 𝑖 ∈ ℬ𝑡𝑘
(𝑗) in (2) means to visit each node in ℬ𝑡𝑘

(𝑗) only once, as in usual set operations.) 

Given that the function to be minimized in (7) is strictly convex in ℝ2, there is a unique reference point 

𝒒𝑡𝑘+1
(𝑗) for each 𝑗 ∈ 𝒞. Also, since all the elements of ℬ𝑡𝑘

(𝑗) belong to 𝒜, and 𝒜 is convex, it follows 

that 𝒒𝑡𝑘+1
(𝑗) ∈ 𝒜. 

Different balancing objectives can be pursued by changing the weights of the weighted squared 

distances in equation (7), i.e., by substituting the transmission rate 𝑟𝑡𝑛(𝑖,𝑗)
(𝑖) with another characteristic 

of sensor node 𝑖, such as the leftover energy. 

4.1.1 Convergence of the reference points to the CVT 

We are interested at showing that the sequences of the reference points (7) converge to the 

generating points of the CVT, i.e., to the generalized centroids, as 𝑘 → ∞. The property will be proved 

in the stationary case, i.e., under the following assumptions: 

 

Assumption 1.  

a. The sensor nodes (differently from the CH nodes) are fixed, and thus the set of the sensor node 

positions is time-independent; we will then omit the subscript 𝑡, i.e., ℱ = {𝒑(𝑖)}𝑖∈𝒱; 

b.  The sensor transmission rates have a Poisson distribution with mean 𝑟̅(𝑖), 𝑖 ∈ 𝒱. 

 

Under Assumption 1.a, at each round 𝑘 the only required communication exchange among the CH 

nodes concerns their positions 𝒒𝑡𝑘
(𝑗), 𝑗 ∈ 𝒞 and the node transmission rates 𝑟𝑡𝑘

(𝑖), 𝑖 ∈ 𝒱. Under 

Assumption 1.b, the scenario is then equivalent to a standard Voronoi clustering problem with points on 

the mission space appearing with exponential distribution. As shown in [29], since the cardinality of 𝒱 

is finite, the sequences of the positions of the reference points 𝒒𝑡𝑘
(𝑗) converge to well-defined limit 

generation points, denoted as �̂�(𝑗) = lim
𝑘→∞

𝒒𝑡𝑘
(𝑗), 𝑗 ∈ 𝒞, collected in the limit set �̂�; the corresponding 

limit Voronoi partition and limit Voronoi regions are denoted as 𝒫�̂� and 𝒫�̂�(�̂�(𝑗)), respectively. The 

following property holds: 

  

Property 1 [29]. The sequence of the Voronoi partitions {𝒫𝒢𝑡𝑘
}

𝑘=0,1,2,…
 generated by the sequences 

of reference points {{𝒒𝑡𝑘
(𝑗)}

𝑗∈𝒞
}

𝑘=0,1,2,…
, converges, almost surely, to the limit Voronoi partition 𝒫�̂� 

generated by the limit reference points �̂�(𝑗), 𝑗 ∈ 𝒞.  ∎ 

 

Thanks to Property 1, to study the steady-state properties of the algorithm we just need to check 

the properties of the limit Voronoi partition 𝒫�̂�, i.e., to check that 𝒫�̂� is a generalized centroidal 

tessellation. 



The Voronoi partition 𝒫𝒢 = {𝒫𝒢(𝒒(𝑗))}
𝑗∈𝒞

 induces an associated node set partition, denoted with 

𝒱𝒢 = {𝒱𝒢(𝑗)}
𝑗∈𝒞

, where the sensor nodes are grouped as: 

𝒱𝒢(𝑗) = 𝒱 ∩ 𝒫𝒢(𝒒(𝑗)) = {𝑖 ∈ 𝒱|𝒑(𝑖) ∈ 𝒫𝒢(𝒒(𝑗)) }, ∀𝑗 ∈ 𝒞.  (8) 

Also, from Property 1, it follows that, as 𝑘 → ∞, the network graph is partitioned in |𝒞| subsets of nodes 

𝒱�̂�(𝑗), 𝑗 ∈ 𝒞, defined as in eq. (8), and that the sequence of node set partitions {𝒱𝒢𝑡𝑘
(𝑗)}

𝑗∈𝒞
, 𝑘 = 0,1, …, 

converges to the limit node set partition {𝒱�̂�(𝑗)}
𝑗∈𝒞

. 

The main result is given in the following Theorem 1, which demonstrates that the limit Voronoi 

partition obtained by the proposed algorithm is a generalized CVT: 

 

Theorem 1. Under Assumption 1, for all CH nodes 𝑗 ∈ 𝒞, the limit reference point �̂�(𝑗) =

lim
𝑘→∞

𝒒𝑡𝑘
(𝑗) of the sequence of reference points (7) coincides with the generalized centroids of the limit 

Voronoi region 𝒫�̂�(�̂�(𝑗)), computed with respect to the stationary density function 𝜂, defined as the 

spatial distribution of the sensors, weighted by the node average transmission rates: 

𝜂(𝒔) = {
1

𝑐
�̅�(𝑖) if 𝒔 = 𝒑(𝑖), ∀𝑖 ∈ 𝒱

0                   otherwise
. (9) 

where 𝑐 is a normalization constant. ∎ 

 

Proof. Since the average transmission rate of the nodes is stationary by assumption, the distribution 

𝜂 is stationary as well. We are interested in the limit generating points of the limit Voronoi partition, 

which, given the update rule of eq. (7), and considering that the sensor node positions are constant by 

Assumption 1.a, are defined as 

�̂�(𝑗) ≔ 𝑙𝑖𝑚
𝑘→+∞

𝒒𝑡𝑘
(𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝒔∈ℝ2
( 𝑙𝑖𝑚

𝑘→+∞
∑

1

𝑡𝑘
∑ 𝑑(𝒔, 𝒑(𝑖))

2
𝑟𝑡𝑛(𝑗,𝑖)(𝑖)

𝜇𝑡𝑘
(𝑗,𝑖)

𝑛=1𝑖∈ℬ𝑡𝑘
(𝑗)  ) , ∀𝑗 ∈ 𝒞.  (10) 

By Property 1, eventually, as 𝑘 → ∞, the position of each generator 𝑗 converges to the limit point 

�̂�(𝑗) and 𝒱𝒢𝑡𝑘
(𝑗) converges to the limit set 𝒱�̂�(𝑗). Hence, eventually, the new nodes 𝑖 in 𝒩𝑡𝑘

(𝑗) will all 

belong to 𝒱�̂�(𝑗). The first consequence is that the contribution of the terms of the first summation in 

(10) for 𝑖 ∈ ℬ𝑡𝑘
(𝑗)\𝒱�̂�(𝑗) will vanish as 𝑘 → +∞: 

�̂�(𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒔∈ℝ2

( 𝑙𝑖𝑚
𝑘→+∞

∑ 𝑑(𝒔, 𝒑(𝑖))
2 1

𝑡𝑘
∑ 𝑑(𝒔, 𝒑(𝑖))

2
𝑟𝑡𝑛(𝑗,𝑖)(𝑖)

𝜇𝑡𝑘
(𝑗,𝑖)

𝑛=1𝑖∈𝒱�̂�(𝑗) ).  (11) 

Secondly, it holds that lim
𝑘→∞

𝜇𝑡𝑘
(𝑗,𝑖)

𝑡𝑘
= 1, ∀𝑖 ∈ 𝑉�̂�(𝑗). Thanks to the fact that the transmission rate 

distribution is stationary, the average transmission rate is recovered at the limit, and, from equation (11), 

it follows: 



�̂�(𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒔∈ℝ2

{∑ 𝑑(𝒔, 𝒑(𝑖))
2

�̅�(𝑖)𝑖∈𝒱�̂�(𝑗) }.  (12) 

Finally, by the definition (9) of 𝜂, from equation (12) it holds that (considering also that the 

normalization constant 𝑐 of equation (9) does not affect the argmin operator): 

�̂�(𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒔∈ℝ2

{∑ 𝑑(𝒔, 𝒑(𝑖))
2

𝜂(𝒑(𝑖))𝑖∈𝒱�̂�(𝑗) }.  (13) 

By comparing equation (13) and equation (2) of Definition 2, it turns out that the limit reference 

point �̂�(𝑗) is the generalized centroid of the limit Voronoi region 𝒫�̂�(�̂�(𝑗)) with respect to the discrete 

stationary density function 𝜂. ∎ 

4.2 Mobile WSN Clustering Implementation 

At stage 𝑘, the information available to each CH node 𝑗 are the sensor node positions, the CH node 

positions, the indexes of its associated sensor nodes, collected in the set 𝒩𝑡𝑘
(𝑗), and the transmission 

rates of its associated nodes, 𝑟𝑡𝑘
(𝑖), 𝑖 ∈ 𝒩𝑡𝑘

(𝑗). 

In practice, to compute the new target positions 𝒒𝑡𝑘+1
(𝑗), 𝑗 ∈ 𝒞, there is no need to solve the 

optimization problem (7) at each stage, or to store all the values of the past CH node positions and 

transmission rates, since iterative algorithms exist, as, for instance, the MacQueen’s k-means method, 

which eventually converges to the same minimizer of (12) (see [20,37]). In the considered scenario, the 

iterative algorithm of Table 4 is executed at every stage 𝑘 by every CH node 𝑗 ∈ 𝒞 to compute the target 

points 𝒒𝑡𝑘+1
(𝑗). 

 



Step 0 Initialization at time 𝑡 = 𝑡0 = 0 (round 0): 

a. 𝒒𝑡0
(𝑗) = 𝟎  

b. 𝜌𝑡0
(𝑗) = 0, ∀𝑗 ∈ 𝒞  

c. 𝑘 = 1  

Step 1 At time 𝑡𝑘 (round 𝑘), for all 𝑗 ∈ 𝒞, compute the neighbor set 𝒩𝑡𝑘
(𝑗) and initialize: 

a. 𝒒𝑡𝑘+1
(𝑗) = 𝒒𝑡𝑘

(𝑗)  

b. 𝜌𝑡𝑘+1
(𝑗) = 𝜌𝑡𝑘

(𝑗)  

Step 2 For all 𝑗 ∈ 𝒞 and for all 𝑖 ∈ 𝒩𝑡𝑘
(𝑗), update 

a. 𝒒𝑡𝑘+1
(𝑗) ←

𝜌𝑡𝑘+1
(𝑖)

𝜌𝑡𝑘+1
(𝑗)+𝑟𝑡𝑘

(𝑖)
𝒒𝑡𝑘+1

(𝑗) +
𝑟𝑡𝑘

(𝑖)

𝜌𝑡𝑘+1
(𝑗)+𝑟𝑡𝑘

(𝑖)
𝒑(𝑖)  

b. 𝜌𝑡𝑘+1
(𝑗) ← 𝜌𝑡𝑘+1

(𝑗) + 𝑟𝑡𝑘
(𝑖)  

Step 3 For all 𝑗 ∈ 𝒞, 

a. Move towards 𝒒𝑡𝑘+1
(𝑖) and transmit the new position to the other CH node 

b. Update 𝑘 ← 𝑘 + 1 

Step 4 Go to Step 1  

Table 4: Dynamic CVT algorithm 

At the end of step 2, 𝒒𝑡𝑘+1
(𝑗) is the new target position of CH node 𝑗 and 𝜌𝑡𝑘+1

(𝑗) is the cumulative 

transmission rate of the nodes associated to CH node 𝑗 up to step 𝑡𝑘. To execute the algorithm of Table 

4 it is sufficient that each CH node 𝑗 stores the current positions of the CH nodes (to compute the 

neighbor set at step 1), the last reference point 𝒒𝑡𝑘
(𝑗) and the last cumulative load 𝜌𝑡𝑘

(𝑗). The initial 

conditions are 𝑧𝑡0
(𝑠) = 0 and 𝜌𝑡0

(𝑠) = 0, ∀𝑠 ∈ 𝒢. 

In non-stationary environments (e.g., when the transmission rates are time-varying or if the network 

graph is time-varying due to sensor mobility and/or due to the occurrence of node failures), the 

distribution 𝜑𝜂 is non-stationary, and, according to Definition 2, the generalized CVT is time-varying 

as well. In this case, Step 1 of Table 4 can be modified to weight the new points (i.e., the node 

associations at step 𝑘) more than the old ones, in an exponential averaging fashion. Step 1.b of the 

iterative algorithm becomes: 

 

Step 1 b. 𝜌𝑡𝑘+1
(𝑗) = 𝛼𝜌𝑡𝑘

(𝑗) 

Table 5: Step 1.b of the dynamic CVT algorithm for non-stationary environments 

where 𝛼 is a constant real number between 0 and 1 which weights the past points: at time 𝑡𝑘, the weight 

of the node association occurred at time 𝑡𝑗 ≤ 𝑡𝑘 is reduced by a factor 𝛼𝑘−𝑗. Depending on the dynamics 

of the distribution, by tuning the parameter 𝛼 this new rule might be able to ‘follow’ the variations of 

the traffic rate distribution and/or of the sensor node positions. Note that the stationary algorithm is 

obtained by setting 𝛼 = 1. 



5 Dynamic Weighted Clustering for Fixed WSN 

In this Section, a new idea is presented to let fixed (non-mobile) CH nodes cope with variations of 

the network, e.g., in terms of node transmission rates. The idea is to control the width of the areas 

covered by the generators (i.e., by the CH nodes) by varying the generator weights in response to the 

variations of the transmission rates of the node. 

5.1 Dynamic Weighted Clustering MDP Model 

The system is modelled as a discrete-time MDP, defined by the tuple {𝒳, 𝒰, 𝑇, 𝑐}, under the 

assumption that sensor node position is fixed and that the sensor transmission rates are stationary and 

exponentially distributed with mean �̅�(𝑖), ∀𝑖 ∈ 𝒱. 

An additive weighted metric is used, where the weights are used to vary the neighbor sets of the 

CH nodes. The sensor node association to the CH nodes depends on the weighted distance, i.e., on a 

weights vector 𝒘 = (𝑤(𝑗))
𝑗∈𝒞

; the neighbor sets are defined accordingly: 

𝒩𝒘(𝑗) ≔ {𝑖 ∈ 𝒱 |𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑗′∈𝒞

(𝑑 (𝒒𝑡𝑘
(𝑗′), 𝒑𝑡𝑘

(𝑖)) − 𝑤(𝑗))} , 𝑗 ∈ 𝒞. (14) 

State space 𝒳. Let 𝒙𝑡𝑘
≔ (𝑠𝑡𝑘

𝑚𝑖𝑛, 𝑤𝑡𝑘
(1), 𝑤𝑡𝑘

(2), … , 𝑤𝑡𝑘
(|𝒞|)) denote the system state at time 𝑡𝑘, 

where: 

- 𝑤𝑡𝑘
(𝑗) ∈ [0, 𝑤𝑚𝑎𝑥], 𝑗 ∈ 𝒞, is the weight associated to the CH node 𝑗 at time 𝑡𝑘; 

- 𝑗𝑡𝑘

𝑚𝑖𝑛 is the least loaded CH node at time 𝑡𝑘, i.e.: 𝑗𝑡𝑘

𝑚𝑖𝑛 ≔ argmin
𝑗∈𝒞

∑ 𝑟𝑡𝑘
(𝑖)

𝑖∈𝒩
𝒘𝑡𝑘 (𝑗) . 

A maximum weight value 𝑤𝑚𝑎𝑥 is defined to limit the state space; clearly, 𝑤𝑚𝑎𝑥 must be selected in 

oder not to affect the control potential. To obtain a discrete and finite state space, the set of admissible 

values is then quantized and defined as: 

𝒬 ≔ {0,
1

𝑞|𝒞|
 𝑤𝑚𝑎𝑥 ,

2

𝑞|𝒞|
𝑤𝑚𝑎𝑥, … ,

𝑞|𝒞|−1

𝑞|𝒞|
𝑤𝑚𝑎𝑥, 𝑤𝑚𝑎𝑥}, with 𝑞 ∈ ℕ, (15) 

where 
𝑤𝑚𝑎𝑥

𝑞|𝒞|
 is the quantization interval. Notice that all the weights are equal if 𝑤(𝑗) =

1

|𝒞|
𝑤𝑚𝑎𝑥, ∀𝑗 ∈ 𝒞 

(in such case, the weighted tessellation corresponds to the standard one). A feasible weight vector 𝒘 is 

defined as the vector of the weights of the CH nodes such that their sum is 𝑤𝑚𝑎𝑥; the set of feasible 

weights is then defined as 

𝒲 ≔ {𝒘 = (𝑤(𝑗))
𝑗∈𝒞

|𝑤(𝑗) ∈ 𝒬, ∀𝑗 ∈ 𝒞, 𝑎𝑛𝑑 ∑ 𝑤(𝑗)𝑗∈𝒞 = 𝑤𝑚𝑎𝑥}. (16) 

With this approximation, the state space is defined as the following finite set: 

𝒳 ≔ {𝒙 = (𝑗, 𝒘)|𝑗 ∈ 𝒞, 𝒘 ∈ 𝒲}. (17) 



Note that different states may exist with the same weights vector, since the CH node loads vary with 

time. With little abuse of notation, the least loaded CH node, the weights vector and the weight 

associated to the 𝑗-th generator in state 𝒙 will be denoted with 𝑗𝒙
𝑚𝑖𝑛, 𝒘𝒙 and 𝑤𝒙(𝑗), respectively. 

Correspondingly, let 𝒩𝒘𝒙(𝑗) be the set of the nodes associated to the CH node 𝑗 in state 𝒙. 

Action space 𝒰. In the generic state 𝒙, the available actions are the ones which increase the weight 

of the least loaded CH node 𝑗𝒙
𝑚𝑖𝑛 and, at the same time, decrease the weight of a CH node. By defining 

𝜹𝑗 as a null vector of |𝒞| components but the 𝑗-th element equal to one, the action space when the system 

is in state 𝒙 is defined as the following set of |𝒞| actions: 

𝒰𝒙 = {𝒖 = 𝜹𝑗𝒙
𝑚𝑖𝑛 − 𝜹𝑗 , 𝑗 ∈ 𝒞}. (18) 

As the controller chooses the action 𝒖 in state 𝒙, the next state 𝒙′ is one of the states in 𝒳 such that 

𝒘𝒙′ = 𝒘𝒙 +
𝑤𝑚𝑎𝑥

𝑞|𝒞|
𝒖. Note that, the action 𝒖 = 𝜹𝑗𝒙

𝑚𝑖𝑛 − 𝜹𝑗 with 𝑗 = 𝑗𝒙
𝑚𝑖𝑛 is a null-valued vector, i.e., it 

equals to doing nothing. 

Transition matrix 𝑇. Given that the transmission rates of the nodes are exponentially distributed, 

there is a probability that, at time 𝑡𝑘+1, any of the CH nodes is the least-loaded one. The transition 

probabilities 𝑝𝒙𝒙′(𝒖) are then positive if 𝒙′ is such that 𝒘𝒙′ = 𝒘𝒙 +
𝑤𝑚𝑎𝑥

𝑞|𝒞|
𝒖, null otherwise. If action 

𝒖 = 𝜹𝑗𝒙
𝑚𝑖𝑛 − 𝜹𝑗 with 𝑗 = 𝑗𝒙

𝑚𝑖𝑛 is chosen, the next weights vector is equal to the current one; nonetheless, 

a state transition may occur if the sensor node loads vary in such a way that the least loaded CH node 

changes. Since the transition probabilities depend on the statistical characteristics of the traffic and are 

not easily computed, and to cope with the curse of dimensionality, a model-free RL approach is proposed 

in the following. 

Cost function 𝑐. The main objective of the algorithm is to balance the load among the CH nodes 

by varying the weights vector and, consequently, the neighbor sets. Let 𝑅𝒙(𝑠) denote the expected load 

of CH node 𝑠 in state 𝒙, and let �̅�𝒙 be the average expected load of the CH nodes on state 𝒙, i.e: 𝑅𝒙(𝑗) =

∑ �̅�(𝑖)𝑖∈𝒩𝒘𝒙(𝑗)  and �̅�𝒙 =
1

|𝒞|
∑ 𝑅𝒙(𝑗)𝑗∈𝒞 . The proposed state-dependent cost function 𝑐: 𝒳 → ℝ≥0, 

evaluating the load balance among the CH nodes, is then the mean squared error 

𝑐(𝒙) = ∑ (𝑅𝒙(𝑗) − �̅�𝒙)2
𝑗∈𝒞 . (19) 

The expected load 𝑅𝒙(𝑗) depends on the state 𝒙 only thanks to the assumption of a stationary 

environment. 

Different balancing objectives can be pursued by changing the cost (19), e.g., by considering the 

leftover energies of the sensor nodes. 



5.2 Dynamic Weighted Clustering RL Algorithm 

The optimal policy for the MDP defined in the former Section is pursued on-line by means of RL 

algorithms. Since the objective of the paper is not focussed on finding new RL algorithms, the Q-

learning algorithm is proposed as a simple, popular and effective algorithm for stationary environments. 

In non-stationary environments, the algorithm in [36] is proposed, which requires minor modifications 

to the Q-learning update rule to be implemented. 

For both the stationary and the non-stationary cases, at stage 𝑘, the information available to each 

CH node 𝑗 are the sets of the positions of the sensor nodes and of the CH nodes, ℱ𝑡𝑘
 and 𝒢𝑡𝑘

, respectively, 

the current weight vector 𝒘𝑡𝑘
, the indexes of its associated nodes, collected in the set 𝒩𝒘𝑡𝑘 (𝑗), and the 

transmission rates of its associated nodes computed over the last stage, 𝑟𝑡𝑘
(𝑖), 𝑖 ∈ 𝒩𝒘𝑡𝑘 (𝑗). Then, each 

CH node 𝑗 computes its current load as the sum of the transmission rates of its associated nodes, i.e., 

𝑅𝑡𝑘
(𝑗) = ∑ 𝑟𝑡𝑘

(𝑗)
𝑖∈𝒩

𝒘𝑡𝑘 (𝑗) , 𝑗 ∈ 𝒞, and communicates it to the other CH nodes. Every CH node then 

computes the current cost as 𝑐(𝒙𝑡𝑘
) = ∑ (𝑅𝑡𝑘

(𝑗) − �̅�𝑡𝑘
)

2
𝑗∈𝒞 , where �̅�𝑡𝑘

=
1

|𝒞|
∑ 𝑅𝑡𝑘

(𝑗)𝑗∈𝒞  is the average 

current load of the CH nodes, and the index 𝑗𝑡𝑘

𝑚𝑖𝑛 of the least-loaded CH node. Thus, each CH node 

knows the current state 𝒙𝑡𝑘
= (𝑗𝑡𝑘

𝑚𝑖𝑛, 𝒘𝑡𝑘
). 

The CH node 𝑗𝑡𝑘

𝑚𝑖𝑛 is the controller node at stage 𝑘; it decides the action 𝒖𝑡𝑘
∈ 𝒰𝒙𝑡𝑘

, based on an 

𝜀-greedy policy, and communicates the new weights 𝒘𝑡𝑘+1
= 𝒘𝑡𝑘

+
𝑤𝑚𝑎𝑥

𝑞|𝒞|
𝒖𝑡𝑘

 to all the other CH nodes. 

Finally, all the CH nodes update their neighbour sets 𝒩𝒘𝑡𝑘+1 (𝑗), 𝑗 ∈ 𝒞, according to the additively 

weighted distance, and update the values of the Q functions according to the Q-learning rule (4). 

 



Step 0 Initialization at time 𝑡 = 𝑡0 = 0 (round 0), for all 𝑗 ∈ 𝒞: 

a. 𝑄(𝒙, 𝒖) = 0, ∀𝒙 ∈ 𝒳, ∀𝒖 ∈ 𝒰  

b. 𝜋(𝒙) = rand{𝒖 ∈ 𝒰𝒙}  

c. 𝑤𝒙(𝑗) =
𝑤𝑚𝑎𝑥

|𝒞|
  

d. 𝑘 = 1  

Step 1 At time 𝑡𝑘 (round 𝑘), for all 𝑗 ∈ 𝒞: 

a. Compute 𝒩𝒘𝑡𝑘  (𝑗) and 𝑅𝑡𝑘
(𝑗) = ∑ 𝑟𝑡𝑘

(𝑖)
𝑖∈𝒩

𝒘𝑡𝑘  (𝑗)  

b. Transmit 𝑅𝑡𝑘
(𝑗) to the other CH nodes 

Step 2 Once received the 𝑅𝑡𝑘
’s, for all 𝑗 ∈ 𝒞: 

a. Retrieve the state 𝒙𝑡𝑘
= (𝑗𝑡𝑘

𝑚𝑖𝑛 , 𝒘𝑡𝑘
) with 𝑗𝑡𝑘

𝑚𝑖𝑛 ≔ argmin
𝑗′∈𝒞

𝑅𝑡𝑘
(𝑗′) 

c. Compute �̅�𝑡𝑘
(𝑗) =

1

|𝒞|
∑ 𝑅𝑡𝑘

(𝑗)𝑗∈𝒞  and 𝑐𝑡𝑘
(𝒙) = ∑ (𝑅𝑡𝑘

(𝑗) − �̅�𝑡𝑘
(𝑗))

2

𝑗∈𝒞   

d. If 𝑘 > 1, update 𝑄(𝒙𝑡𝑘−1
, 𝒖𝑡𝑘−1

) with update rule (4) 

Step 3 CH node 𝑗𝑡𝑘

𝑚𝑖𝑛: 

a. Chooses 𝒖𝑡𝑘
 with ε-greedy rule (5)  

b. Computes 𝒘𝑡𝑘+1
= 𝒘𝑡𝑘

+
𝑤𝑚𝑎𝑥

𝑞|𝒞|
𝒖𝑡𝑘

  

c. Transmits 𝒘𝑡𝑘+1
 to the other CH nodes 𝑗 ∈ 𝒞 

Step 4 For all 𝑗 ∈ 𝒞: 

a. Update 𝑘 ← 𝑘 + 1 and go to Step 1  

Table 6: Weighted CVT algorithm 

Even if each CH node computes and stores the Q-tables independently, and even if, at every stage, 

only one of the CH nodes is the controller, the Q-learning algorithm properties still hold since the Q-

function estimates coincide, being based on the same information set. 

In non-stationary environments, the update rule (6) is used in Step 2.d of the algorithm to try to 

follow the time-varying distribution of the traffic rate of the sensor nodes: 

 

Step 2 d. If 𝑘 > 1, update 𝑄(𝒙𝑡𝑘−1
, 𝒖𝑡𝑘−1

) with update rule (6) 

Table 7: Step 2.d of the weighted CVT algorithm for non-stationary environments 

6 Simulations 

Numerical simulations were executed to test the presented algorithms against a static clustering 

strategy. The objective was to evaluate the algorithm characteristics and no specific WSN was modeled.  

Three clustering algorithms were implemented. A reference static algorithm was considered, in 

which the CH nodes are fixedly placed in the position corresponding to the generators of the CVT of 

the mission area 𝒜 (static clustering); let the set of the positions of the CH nodes with static clustering 



be denoted as 𝒢𝒜
𝐶𝑉𝑇. The dynamic CVT algorithm of Table 4 and Table 5 was also implemented, with 

mobile CH nodes and with initial CH node positions 𝒢𝑡0
= 𝒢𝒜

𝐶𝑉𝑇 (dynamic CVT clustering). Finally, 

also the dynamic CVT algorithm of Table 6 and Table 7 was implemented, with fixed CH nodes with 

positions 𝒢𝑡𝑘
= 𝒢𝒜

𝐶𝑉𝑇, ∀𝑘 = 0,1, … (dynamic weighted clustering). 

Three scenarios were simulated: with static nodes and stationary distribution of the average 

transmission rates of the sensor nodes (stationary scenario); with static nodes and time-varying 

transmission rate distribution (non-stationary scenario); with mobile nodes and stationary rate 

distribution (mobile scenario). The parameter 𝛼 of the dynamic CVT algorithm was set equal to  0.7 in 

the non-stationary and mobile scenarios. The learning rate of the RL algorithm was selected as 

𝜆𝑡𝑘
(𝒙𝑡𝑘

) = 1/𝑛𝑡𝑘
(𝒙𝑡𝑘

), where 𝑛𝑡𝑘
(𝒙𝑡𝑘

) is the number of times that the current state was visited up to 

time 𝑡𝑘. The other RL algorithm parameters were set as described in Table 8. 

 

Parameter Stationary scenario Non-stationary and mobile scenarios 

𝑞 20  20  

𝑤𝑚𝑎𝑥 17.7  41.3  

𝛾 0.95  0.75  

𝜀 0.8  0.8  

Table 8: RL parameters 

In the first scenario, |𝒱| = 625 fixed sensor nodes were regularly positioned over an area 𝒜 of 

26 × 26, as shown in Figure 1 a). The number of CH nodes was |𝒞| = 4 and the number of simulated 

rounds was 𝐾 = 300. The sensor node transmission rate distribution was stationary during the 

simulation runs. The distribution was exponential with mean �̅�(𝑖) depending on the position 𝑦(𝑖) of the 

sensor node 𝑖 on 𝒜: �̅�(𝑖) =
1

𝑐
𝑓𝒩(𝑦(𝑖)|𝜇, 𝜎2), where 𝑐 =

1

|𝒱|
∑ �̅�(𝑖)𝑖∈𝒱  is a normalization constant, 𝑓𝒩 

denotes the probability density function of a normal spatial distribution on the Euclidean plane, and 𝜇 =

(7.25,7.25) and 𝜎2 = 36 are the mean and variance of the distribution, respectively (i.e., in this 

scenario, the normal distribution of the mean transmission rate was centered in the lower-right quadrant 

of 𝒜). Figure 1 a) shows the initial CH node positions 𝒢𝒜
𝐶𝑉𝑇, inducing a CVT for the sensor node 

positions (i.e., without weighting each node with its transmission rate). The upper plot of Figure 1 d) 

shows that this configuration does not guarantee a balanced load among the CH nodes, with an average 

cost during the simulation of about 0.35; note that the cost variations during the simulations are due to 

the fact that the node transmission rates are not constant. Figure 1 b) shows the final positions of the CH 

nodes as well as their trajectories during the simulation performed with the dynamic CVT algorithm: 

the cluster of the lower-left CH node (i.e., the CH node closer to the sensor nodes with the largest 

transmission rates) is reduced, while the cluster of the upper-right CH node (i.e., the CH node closer to 

the sensor nodes with the smallest transmission rates) is increased. The middle plot of Figure 1 d) shows 



that this configuration manages to improve the load balance, with a cost which is rapidly lowered in the 

first 50 rounds and which then stabilizes at about 0.06 (the cost is about 16.5% with respect to the static 

simulation). Figure 1 c) shows the final partition obtained by varying the weights vector in the 

simulation performed with the dynamic weighted algorithm: again, the cluster of the lower-left CH node 

is reduced, while the cluster of the upper-right CH node is increased. The lower plot of Figure 1 d) shows 

that also this configuration improves the load balance, with a cost which is lowered in the first 50 rounds, 

and which then stabilizes at about 0.09 (the cost is about 25.7% with respect to the static simulation). 

During the first 50 rounds the cost oscillates because the RL algorithm is exploring the state space, and 

sometimes unfavorable actions are chosen. We note that, in this scenario, the weighted dynamic 

algorithm performances are similar to the dynamic CVT algorithm ones, even if the CH node positions 

are fixed. 

 

a) d)

b) c)

Sensor nodes

(darker nodes have larger

transmission rate mean)

CH node initial positions

CH node final positions

Borders of the Voronoi regions

 

Figure 1: stationary scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; c) 

final configuration with dynamic weighted algorithm; d) cost dynamics during the simulation. 

In the non-stationary scenario, 800 fixed sensor nodes were randomly positioned over an area 𝒜 

of 45 × 45 , as shown in Figure 2 a). The number of CH nodes was |𝒞| = 9 and the number of simulated 

rounds was 𝐾 = 400. The sensor node transmission rate distribution was time-varying during the first 



𝐾1 = 300 rounds. Initially, at time 𝑡0 = 0, all the sensor nodes transmits with equal mean rate �̅�𝑡0
(𝑖) =

1

|𝒱|
, ∀𝑖 ∈ 𝒱; at the end of the simulation, the distribution was exponential with normally distributed 

intensity: �̅�𝑡𝐾
(𝑖) =

1

𝑐
𝑓𝒩(𝑦𝑡𝐾

(𝑖)|𝜇, 𝜎2), with 𝜇 = (22,22) and 𝜎2 = 49 (i.e., the final transmission rate 

distribution was centered in 𝒜). The mean rates of the sensor nodes were linearly varied from round 0 

to round 𝐾1 as �̅�𝑡𝑘
(𝑖) = �̅�𝑡0

(𝑖) +
𝑘

𝐾1
(�̅�𝑡𝐾1

(𝑖) − �̅�𝑡0
(𝑖)) , 𝑘 = 0,1, … , 𝐾1, and then remained constant 

during the last rounds, i.e., �̅�𝑡𝑘
(𝑖) = �̅�𝑡𝐾

(𝑖), 𝑘 = 𝐾1, 𝐾1 + 1, … , 𝐾. Figure 2 a) shows the initial CH node 

positions 𝒢𝒜
𝐶𝑉𝑇, inducing a CVT for the sensor node positions. The upper plot of Figure 2 d) shows that, 

initially, when the mean transmission rates of the sensor nodes are uniform, this configuration guarantees 

a balanced load among the CH nodes; however, as the rate distribution changes, the load balance 

degrades and the cost grows up to about 0.22 in the final rounds. Figure 2 b) shows the final positions 

of the CH nodes as well as their trajectories during the simulation performed with the dynamic CVT 

algorithm: the cluster of the center CH node (i.e., the CH node closer to the sensor nodes with the largest 

transmission rate) is reduced, while the other clusters are increased. The middle plot of Figure 2 d) shows 

that the CH node trajectories manage to vary the Voronoi regions in order to keep the load balanced 

during the simulation rounds, with an average cost of about 0.03 (the cost is about 12.6% with respect 

to the static simulation). Figure 2 c) shows the final partition obtained by varying the weights vector in 

the simulation performed with the dynamic weighted algorithm: again, the cluster of the middle CH 

node is reduced, while the other clusters are increased. The lower plot of Figure 2 d) shows that the 

variations of the weights vector during the simulation rounds manage to keep the load balanced, with an 

average cost of about 0.04 (16.8% with respect to the static simulation). 

 



a) d)

b) c)
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transmission rate mean)
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Figure 2: non-stationary scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; 

c) final configuration with dynamic weighted algorithm; d) cost dynamics during the simulation. 

The mobile scenario presents mobile sensor nodes, initially randomly positioned over an area of 

45 × 45, as shown in Figure 3 a). The number of CH nodes was |𝒞| = 9 and the number of simulated 

rounds was 𝐾 = 400. The sensor node transmission rate distribution was stationary during the 

simulation runs: �̅�(𝑖) =
1

|𝒱|
, ∀𝑖 ∈ 𝒱 during the whole simulation. From round 0 to round 𝐾1 = 300 the 

sensor nodes move over a larger mission area of 63 × 63: the final node position 𝑦𝑡𝐾1
(𝑖) was randomly 

computed as 𝑦𝑡𝐾1
(𝑖) = rand(1,1.5) ⋅ 𝑦𝑡0

(𝑖), where rand(1,1.5) is a random number extracted from a 

uniform distribution between 1 and 1.5. The positions of the sensor nodes were linearly varied from 

round 0 to round 𝐾1 as 𝑦𝑡𝑘
(𝑖) = 𝑦𝑡0

(𝑖) +
𝑘

𝐾1
(𝑦𝑡𝐾1

(𝑖) − 𝑦𝑡0
(𝑖)) , 𝑘 = 0,1, … , 𝐾1, and then remained 

constant during the last rounds, 𝑦𝑡𝑘
(𝑖) = 𝑦𝑡𝐾

(𝑖), 𝑘 = 𝐾1, 𝐾1 + 1, … , 𝐾. Figure 3 a) shows the initial CH 

node positions 𝒢𝒜
𝐶𝑉𝑇, inducing a CVT for the initial sensor node positions. The upper plot of Figure 3 d) 

shows that, initially, since the mean transmission rates of the sensor nodes are uniform, this 

configuration guarantees a balanced load among the CH nodes; however, as the nodes start moving, the 

load balance degrades and the cost grows up to about 0.02 in the final rounds. Figure 3 b) shows the 

final positions of the CH nodes as well as their trajectories during the simulation performed with the 



dynamic CVT algorithm: as the nodes spread over the mission area the CH nodes move away from one 

another to cover a larger area. The lower plot of Figure 3 d) shows that the CH node trajectories manage 

to vary the Voronoi regions to keep the load balanced during the simulation rounds, with an average 

cost of about 0.002 (20% with respect to average cost in the static simulation) and a final cost of about 

0.004 (17.8% with respect to final cost in the static simulation). 

 

a) b)

Sensor nodes

(darker nodes have larger transmission rate mean)

CH node initial positions

CH node final positions

Borders of the Voronoi regions

c)

 

Figure 3: mobile scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; c) cost 

dynamics during the simulation. 

7 Conclusions 

The proposed approaches to WSN clustering manage to dynamically partition the mission space 

with the objective of balancing the load of the cluster head nodes. Two distributed iterative algorithms 

are proposed. In case the CH nodes are mobile, the first algorithm dynamically controls the positions of 

the CH nodes, considered as the generator points of a Voronoi partition, in such a way that the partition 

converges to a generalized Centroidal Voronoi Tessellation, with favorable load balancing 

characteristics. In case the CH nodes are fixed, the second algorithm is proposed, based on reinforcement 

learning. The algorithm dynamically controls the weights of the additively weighted Voronoi partition 

generated by the positions of the CH nodes, with the aim of balancing their load. In both the proposed 

algorithms, the main innovation is that they guarantee the convergence towards a balanced network 

partition without the need of solving optimization programs or of explicitly computing the Voronoi 

diagram at any time-step. The algorithms were validated by numerical simulations. 

Current and future work is aimed at three main objectives: 



i. The first objective is to take into account also energy-balancing objectives by considering the 

WSN energy-related characteristics – such as the energy depletion due to the transmitted traffic 

or to the node mobility, or the impact of energy harvesting approaches (see, e.g., [38]). The first 

algorithm can be modified by defining appropriate weights for equation (7), and the second 

algorithm can be modified by defining different costs with respect to the ones in equation (19). 

ii. The second objective is to enhance the algorithm performances in non-stationary environments, 

e.g., by means of model-based control design to make use of predictions of the node mobility 

and/or of the traffic dynamics. 

iii. The third objective is to apply the proposed algorithms to real use-cases, therefore taking into 

account all the technology-dependent implementation issues not investigated in this paper. 
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