Let G be a connected reductive complex algebraic group and B a Borel subgroup of G. We consider a subgroup H of B which acts with finitely many orbits on the flag variety G / B, and we classify the H-orbits in G / B in terms of suitable root systems. As well, we study the Weyl group action defined by Knop on the set of H-orbits in G / B, and we give a combinatorial model for this action in terms of weight polytopes.

Orbits of strongly solvable spherical subgroups on the flag variety / Pezzini, Guido; Gandini, Jacopo. - In: JOURNAL OF ALGEBRAIC COMBINATORICS. - ISSN 0925-9899. - STAMPA. - 47:3(2018), pp. 357-401. [https://doi.org/10.1007/s10801-017-0779-x]

Orbits of strongly solvable spherical subgroups on the flag variety

PEZZINI, Guido;
2018

Abstract

Let G be a connected reductive complex algebraic group and B a Borel subgroup of G. We consider a subgroup H of B which acts with finitely many orbits on the flag variety G / B, and we classify the H-orbits in G / B in terms of suitable root systems. As well, we study the Weyl group action defined by Knop on the set of H-orbits in G / B, and we give a combinatorial model for this action in terms of weight polytopes.
File allegati a questo prodotto
File Dimensione Formato  
Gandini_Orbits_2018.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 525.54 kB
Formato Adobe PDF
525.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Gandini_preprint_Orbits_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 521.17 kB
Formato Unknown
521.17 kB Unknown Visualizza/Apri PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/996974
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 7
social impact