We prove nonexistence results of Liouville type for nonnegative viscosity solutions of some equations involving the fully nonlinear degenerate elliptic operators Pk ±, defined respectively as the sum of the largest and the smallest k eigenvalues of the Hessian matrix. For the operator Pk + we obtain results analogous to those which hold for the Laplace operator in space dimension k. Whereas, owing to the stronger degeneracy of the operator Pk −, we get totally different results.
Liouville theorems for a family of very degenerate elliptic nonlinear operators / Birindelli, Isabella; Galise, Giulio; Leoni, Fabiana. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 161:(2017), pp. 198-211. [10.1016/j.na.2017.06.002]
Liouville theorems for a family of very degenerate elliptic nonlinear operators
BIRINDELLI, Isabella
;GALISE, GIULIO;LEONI, Fabiana
2017
Abstract
We prove nonexistence results of Liouville type for nonnegative viscosity solutions of some equations involving the fully nonlinear degenerate elliptic operators Pk ±, defined respectively as the sum of the largest and the smallest k eigenvalues of the Hessian matrix. For the operator Pk + we obtain results analogous to those which hold for the Laplace operator in space dimension k. Whereas, owing to the stronger degeneracy of the operator Pk −, we get totally different results.File | Dimensione | Formato | |
---|---|---|---|
Birindelli_Liouville-theorems_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
737.81 kB
Formato
Adobe PDF
|
737.81 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.