In this paper we study the chemical reaction of inhibition, determine the appropriate parameter $epsilon$ for the application of Tihonov's Theorem, compute explicitly the equations of the center manifold of the system and find sufficient conditions to guarantee that in the phase space the curves which relate the behavior of the complexes to the substrates by means of the tQSSA are asymptotically equivalent to the center manifold of the system. Some numerical results are discussed.

Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics / Bersani, Alberto Maria; Borri, A.; Milanesi, Alessandro; Vellucci, Pierluigi. - In: COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS. - ISSN 2038-0909. - STAMPA. - 8:1(2017), pp. 81-102. [10.1515/caim-2017-0005]

Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics

BERSANI, Alberto Maria;MILANESI, ALESSANDRO;VELLUCCI, PIERLUIGI
2017

Abstract

In this paper we study the chemical reaction of inhibition, determine the appropriate parameter $epsilon$ for the application of Tihonov's Theorem, compute explicitly the equations of the center manifold of the system and find sufficient conditions to guarantee that in the phase space the curves which relate the behavior of the complexes to the substrates by means of the tQSSA are asymptotically equivalent to the center manifold of the system. Some numerical results are discussed.
Enzyme Kinetics, Inhibition, Tihonov's Theorem, Center Manifold, Perturbation Theory
01 Pubblicazione su rivista::01a Articolo in rivista
Tihonov theory and center manifolds for inhibitory mechanisms in enzyme kinetics / Bersani, Alberto Maria; Borri, A.; Milanesi, Alessandro; Vellucci, Pierluigi. - In: COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS. - ISSN 2038-0909. - STAMPA. - 8:1(2017), pp. 81-102. [10.1515/caim-2017-0005]
File allegati a questo prodotto
File Dimensione Formato  
Bersani_Tihonov-theory_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 880.83 kB
Formato Adobe PDF
880.83 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/983994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 3
social impact