Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two preterm infants were randomly assigned to either the no-LCP group (fed formula without LCPs; n = 11) or the LCP group (fed formula with LCPs; n = 11). Dietary LCPs had higher C-13 content than did the endogenously synthesized LCPs which were derived from linoleic and a-linolenic acids. The C-13 content of major selected plasma fatty acids was measured by using gas chromatography-isotope ratio mass spectrometry at birth and at age 1, 3, and 7 mo. Absolute LCP synthesis and the percentage of LCP synthesis relative to dietary intake were calculated. Results: Percentage AA synthesis was 67.2 +/- 7.8%, 35.9 +/- 9.8%, and 29.0 +/- 10.3%, and that of DHA was 41.7 +/- 14.9%,10.5 +/- 8.1%, and 7.4 +/- 6.2% at 1, 3, and 7 mo old, respectively. Absolute AA synthesis was 26.7 +/- 4.2,14.4 +/- 3.9, and 11.6 +/- 4.1 mg center dot kg(-1)d(-1) and that of DHA was 12.6 +/- 4.5, 3.2 +/- 2.5, and 2.3 +/- 1.9 mg center dot kg(-1) center dot d(-1) at 1, 3, and 7 mo old, respectively. AA and DHA synthesis decreased significantly (P < 0.01) with time, and AA synthesis was significantly (P < 0.01) greater than DHA synthesis. Conclusions: By this novel approach, we measured endogenous LCP synthesis in infants receiving dietary LCPs over long periods. By age 7 mo, LCP synthesis was dramatically lower in preterm infants fed LCPs.
Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids / V. P., Carnielli; M., Simonato; G., Verlato; I., Luijendijk; DE CURTIS, Mario; P. J. J., Sauer; P. E., Cogo. - In: THE AMERICAN JOURNAL OF CLINICAL NUTRITION. - ISSN 0002-9165. - STAMPA. - 86:5(2007), pp. 1323-1330.
Synthesis of long-chain polyunsaturated fatty acids in preterm newborns fed formula with long-chain polyunsaturated fatty acids
DE CURTIS, MARIO;
2007
Abstract
Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) are long-chain polyunsaturated fatty acids (LCPs) that play pivotal roles in growth and neurodevelopment. Objective: We aimed to quantify the synthesis of LCPs in preterm infants fed infant formula containing LCPs. Design: Twenty-two preterm infants were randomly assigned to either the no-LCP group (fed formula without LCPs; n = 11) or the LCP group (fed formula with LCPs; n = 11). Dietary LCPs had higher C-13 content than did the endogenously synthesized LCPs which were derived from linoleic and a-linolenic acids. The C-13 content of major selected plasma fatty acids was measured by using gas chromatography-isotope ratio mass spectrometry at birth and at age 1, 3, and 7 mo. Absolute LCP synthesis and the percentage of LCP synthesis relative to dietary intake were calculated. Results: Percentage AA synthesis was 67.2 +/- 7.8%, 35.9 +/- 9.8%, and 29.0 +/- 10.3%, and that of DHA was 41.7 +/- 14.9%,10.5 +/- 8.1%, and 7.4 +/- 6.2% at 1, 3, and 7 mo old, respectively. Absolute AA synthesis was 26.7 +/- 4.2,14.4 +/- 3.9, and 11.6 +/- 4.1 mg center dot kg(-1)d(-1) and that of DHA was 12.6 +/- 4.5, 3.2 +/- 2.5, and 2.3 +/- 1.9 mg center dot kg(-1) center dot d(-1) at 1, 3, and 7 mo old, respectively. AA and DHA synthesis decreased significantly (P < 0.01) with time, and AA synthesis was significantly (P < 0.01) greater than DHA synthesis. Conclusions: By this novel approach, we measured endogenous LCP synthesis in infants receiving dietary LCPs over long periods. By age 7 mo, LCP synthesis was dramatically lower in preterm infants fed LCPs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.