Dysregulation of dopamine receptors is thought to underlie levodopa-induced dyskinesias in experimental models of Parkinson’s disease. It is unknown whether an imbalance of the second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is involved in the alterations of levodopa ⁄ dopamine signal transduction. We examined cAMP and cGMP signalling in the interconnected cortico-striatal-pallidal loop at the peak of levodopa-induced dyskinesias in rats with 6- hydroxydopamine lesions in the substantia nigra. In addition, we examined the role of phosphodiesterase (PDE) and the rate of cAMP and cGMP degradation on the severity of levodopa-induced dyskinesias in animals pretreated with PDE inhibitor, zaprinast. Unilateral lesion of substantia nigra led to an increase in cAMP but a decrease in cGMP levels in the ipsilateral basal ganglia. After chronic levodopa treatment, cAMP and cGMP were differentially regulated in eukinetic animals: the cAMP level increased in the cortex and striatum but decreased in the globus pallidus of both hemispheres, whereas the cGMP decreased below baseline levels in the contralateral cortico-striatal-pallidal regions. In dyskinetic animals chronic levodopa treatment led to an absolute decrease in cAMP and cGMP levels in cortico-striatal-pallidal regions of both hemispheres. Pretreatment with zaprinast reduced the severity of levodopa-induced dyskinesias, and partly prevented the decrease in cyclic nucleotides compared with pretreatment with salinelevodopa. In conclusion, using a rat model of hemiparkinsonism, we observed a significant reduction in the levels of cyclic nucleotides in both hemispheres at the peak of levodopa-induced dyskinesias. We propose that such a decrease in cyclic nucleotides may partly result from increased catabolism through PDE overactivity.

Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: New aspects in the pathogenetic mechanisms / Giorgi, Mauro; D'Angelo, V.; Esposito, Z.; Nuccetelli, V.; Sorge, R.; Martorana, A.; Stefani, A.; Bernardi, G.; Sancesario, G.. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - STAMPA. - 28:5(2008), pp. 941-950. [10.1111/j.1460-9568.2008.06387.x]

Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: New aspects in the pathogenetic mechanisms

GIORGI, MAURO;
2008

Abstract

Dysregulation of dopamine receptors is thought to underlie levodopa-induced dyskinesias in experimental models of Parkinson’s disease. It is unknown whether an imbalance of the second messengers, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), is involved in the alterations of levodopa ⁄ dopamine signal transduction. We examined cAMP and cGMP signalling in the interconnected cortico-striatal-pallidal loop at the peak of levodopa-induced dyskinesias in rats with 6- hydroxydopamine lesions in the substantia nigra. In addition, we examined the role of phosphodiesterase (PDE) and the rate of cAMP and cGMP degradation on the severity of levodopa-induced dyskinesias in animals pretreated with PDE inhibitor, zaprinast. Unilateral lesion of substantia nigra led to an increase in cAMP but a decrease in cGMP levels in the ipsilateral basal ganglia. After chronic levodopa treatment, cAMP and cGMP were differentially regulated in eukinetic animals: the cAMP level increased in the cortex and striatum but decreased in the globus pallidus of both hemispheres, whereas the cGMP decreased below baseline levels in the contralateral cortico-striatal-pallidal regions. In dyskinetic animals chronic levodopa treatment led to an absolute decrease in cAMP and cGMP levels in cortico-striatal-pallidal regions of both hemispheres. Pretreatment with zaprinast reduced the severity of levodopa-induced dyskinesias, and partly prevented the decrease in cyclic nucleotides compared with pretreatment with salinelevodopa. In conclusion, using a rat model of hemiparkinsonism, we observed a significant reduction in the levels of cyclic nucleotides in both hemispheres at the peak of levodopa-induced dyskinesias. We propose that such a decrease in cyclic nucleotides may partly result from increased catabolism through PDE overactivity.
2008
Dopamine; Globus pallidus; Involuntary movement; Parkinson's disease; Striatum; Animals; Animals, Newborn; Brain; Cerebral Cortex; Cyclic AMP; Cyclic GMP; Dopamine; Dopamine Agents; Down-Regulation; Dyskinesia, Drug-Induced; Globus Pallidus; Levodopa; Male; Neostriatum; Oxidopamine; Parkinsonian Disorders; Phosphodiesterase Inhibitors; Phosphorylation; Purinones; Rats; Rats, Sprague-Dawley; Second Messenger Systems; Substantia Nigra; Sympatholytics; Synaptic Transmission; Neuroscience (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: New aspects in the pathogenetic mechanisms / Giorgi, Mauro; D'Angelo, V.; Esposito, Z.; Nuccetelli, V.; Sorge, R.; Martorana, A.; Stefani, A.; Bernardi, G.; Sancesario, G.. - In: EUROPEAN JOURNAL OF NEUROSCIENCE. - ISSN 0953-816X. - STAMPA. - 28:5(2008), pp. 941-950. [10.1111/j.1460-9568.2008.06387.x]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/979447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 84
social impact