Two nonlinear systems having the same number of inputs, but not the same number of state variables, are considered. The problem of the existence of two invertible state feedback laws and a surjective mapping from the higher dimensional state space of one system into the lower dimensional state space of the second system is stated, such that the rst system dynamics reduces exactly to the second system dynamics. This problem generalizes the linear feedback equivalence problem of two systems and is fully solved in the special case of feedback linearizable systems.
Immersion of nonlinear systems into higher order systems / Aranda Bricaire, Eduardo; Califano, Claudia; Moog, Claude H.. - STAMPA. - 50:1(2017), pp. 9480-9484. (Intervento presentato al convegno 20th IFAC World Congress tenutosi a Toulouse; France nel July 2017) [10.1016/j.ifacol.2017.08.1581].
Immersion of nonlinear systems into higher order systems
CALIFANO, Claudia
;
2017
Abstract
Two nonlinear systems having the same number of inputs, but not the same number of state variables, are considered. The problem of the existence of two invertible state feedback laws and a surjective mapping from the higher dimensional state space of one system into the lower dimensional state space of the second system is stated, such that the rst system dynamics reduces exactly to the second system dynamics. This problem generalizes the linear feedback equivalence problem of two systems and is fully solved in the special case of feedback linearizable systems.File | Dimensione | Formato | |
---|---|---|---|
ArandaBricaire_Immersion_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
390.96 kB
Formato
Adobe PDF
|
390.96 kB | Adobe PDF | Contatta l'autore |
ArandaBricaire_Frontespizio-indice_Immersion_2017.pdf
solo gestori archivio
Tipologia:
Altro materiale allegato
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
441.32 kB
Formato
Adobe PDF
|
441.32 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.