Special polynomials, ascribed to the family of Gegenbauer, Legen- dre, and Jacobi and of their associated forms, can be expressed in an operational way, which allows a high degree of exibility for the for- mulation of the relevant theory. We develop a point of view based on an umbral type formalism, exploited in the past, to study some aspects of the theory of special functions, in general, and in particular those of Bessel functions. We propose a fairly general analysis, allowing a transparent link between dierent forms of special polynomials .

On an umbral treatment of Gegenbauer,Legendre and Jacobi polynomials / Germano, Bruna; G., Dattoli; S., Licciardi; M. R., Martinelli. - In: INTERNATIONAL MATHEMATICAL FORUM. - ISSN 1312-7594. - STAMPA. - 12:(2017), pp. 531-551. [10.12988/imf.2017.6789]

On an umbral treatment of Gegenbauer,Legendre and Jacobi polynomials

GERMANO, Bruna;
2017

Abstract

Special polynomials, ascribed to the family of Gegenbauer, Legen- dre, and Jacobi and of their associated forms, can be expressed in an operational way, which allows a high degree of exibility for the for- mulation of the relevant theory. We develop a point of view based on an umbral type formalism, exploited in the past, to study some aspects of the theory of special functions, in general, and in particular those of Bessel functions. We propose a fairly general analysis, allowing a transparent link between dierent forms of special polynomials .
2017
Gegenbauer, Legendre and Jacobi Polynomials, Umbral Cal- culus, Integral Transforms, Operatorational Methods
01 Pubblicazione su rivista::01a Articolo in rivista
On an umbral treatment of Gegenbauer,Legendre and Jacobi polynomials / Germano, Bruna; G., Dattoli; S., Licciardi; M. R., Martinelli. - In: INTERNATIONAL MATHEMATICAL FORUM. - ISSN 1312-7594. - STAMPA. - 12:(2017), pp. 531-551. [10.12988/imf.2017.6789]
File allegati a questo prodotto
File Dimensione Formato  
On an Umbral treatment of Gegembauer.Legendre and Jacobi polynomials12.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 343.9 kB
Formato Adobe PDF
343.9 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/975692
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact