Parallel corpora are widely used in a variety of Natural Language Processing tasks, from Machine Translation to cross-lingual Word Sense Disambiguation, where parallel sentences can be exploited to automatically generate high-quality sense annotations on a large scale. In this paper we present EuroSense, a multilingual sense-annotated resource based on the joint disambiguation of the Europarl parallel corpus, with almost 123 million sense annotations for over 155 thousand distinct concepts and entities from a language-independent unified sense inventory. We evaluate the quality of our sense annotations intrinsically and extrinsically, showing their effectiveness as training data for Word Sense Disambiguation.

EuroSense: Automatic Harvesting of Multilingual Sense Annotations from Parallel Text / DELLI BOVI, Claudio; CAMACHO COLLADOS, Jose'; Raganato, Alessandro; Navigli, Roberto. - ELETTRONICO. - 1:(2017). (Intervento presentato al convegno Proceedings of 55th annual meeting of the Association for Computational Linguistics (ACL 2017) tenutosi a Vancouver, Canada nel 30 July-4 August 2017) [10.18653/v1/P17-2094].

EuroSense: Automatic Harvesting of Multilingual Sense Annotations from Parallel Text

DELLI BOVI, CLAUDIO;CAMACHO COLLADOS, JOSE';raganato, alessandro;NAVIGLI, Roberto
2017

Abstract

Parallel corpora are widely used in a variety of Natural Language Processing tasks, from Machine Translation to cross-lingual Word Sense Disambiguation, where parallel sentences can be exploited to automatically generate high-quality sense annotations on a large scale. In this paper we present EuroSense, a multilingual sense-annotated resource based on the joint disambiguation of the Europarl parallel corpus, with almost 123 million sense annotations for over 155 thousand distinct concepts and entities from a language-independent unified sense inventory. We evaluate the quality of our sense annotations intrinsically and extrinsically, showing their effectiveness as training data for Word Sense Disambiguation.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/975555
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact