This paper provides the results of the adjoint sensitivity model developed in the accompanying Part I for a natural draft counter-flow cooling tower. The selected responses are (1) outlet air temperature, (2) outlet water temperature, (3) outlet water mass flow rate, (4) air outlet relative humidity, and (5) air mass flow rate. Explicit expressions for the best-estimate nominal values of the model parameters and responses are also provided, together with the best-estimate reduced standard deviations of the predicted model parameters and responses. The results stemming from this work show that the PM_CMPS procedure reduces the predicted standard deviations of all responses and model parameters.

Predictive modeling of a buoyancy-operated cooling tower under saturated conditions - II: Optimal best-estimate results with reduced predicted uncertainties / DI ROCCO, Federico; Cacuci, Dan G; Badea, Madalina C.. - In: NUCLEAR SCIENCE AND ENGINEERING. - ISSN 0029-5639. - STAMPA. - 185:3(2017), pp. 549-603. [10.1080/00295639.2017.1279943]

Predictive modeling of a buoyancy-operated cooling tower under saturated conditions - II: Optimal best-estimate results with reduced predicted uncertainties

DI ROCCO, FEDERICO;
2017

Abstract

This paper provides the results of the adjoint sensitivity model developed in the accompanying Part I for a natural draft counter-flow cooling tower. The selected responses are (1) outlet air temperature, (2) outlet water temperature, (3) outlet water mass flow rate, (4) air outlet relative humidity, and (5) air mass flow rate. Explicit expressions for the best-estimate nominal values of the model parameters and responses are also provided, together with the best-estimate reduced standard deviations of the predicted model parameters and responses. The results stemming from this work show that the PM_CMPS procedure reduces the predicted standard deviations of all responses and model parameters.
2017
adjoint sensitivity analysis; best-estimate predictions; data assimilation; nuclear energy and engineering
01 Pubblicazione su rivista::01a Articolo in rivista
Predictive modeling of a buoyancy-operated cooling tower under saturated conditions - II: Optimal best-estimate results with reduced predicted uncertainties / DI ROCCO, Federico; Cacuci, Dan G; Badea, Madalina C.. - In: NUCLEAR SCIENCE AND ENGINEERING. - ISSN 0029-5639. - STAMPA. - 185:3(2017), pp. 549-603. [10.1080/00295639.2017.1279943]
File allegati a questo prodotto
File Dimensione Formato  
DiRocco_Predictive_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/973257
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 1
social impact