We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.
A new scheme of integrability for (bi)Hamiltonian PDE / DE SOLE, Alberto; Kac, Victor G.; Valeri, Daniele. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 347:2(2016), pp. 449-488. [10.1007/s00220-016-2684-x]
A new scheme of integrability for (bi)Hamiltonian PDE
DE SOLE, ALBERTO;Valeri, Daniele
2016
Abstract
We develop a new method for constructing integrable Hamiltonian hierarchies of Lax type equations, which combines the fractional powers technique of Gelfand and Dickey, and the classical Hamiltonian reduction technique of Drinfeld and Sokolov. The method is based on the notion of an Adler type matrix pseudodifferential operator and the notion of a generalized quasideterminant. We also introduce the notion of a dispersionless Adler type series, which is applied to the study of dispersionless Hamiltonian equations. Non-commutative Hamiltonian equations are discussed in this framework as well.File | Dimensione | Formato | |
---|---|---|---|
DeSole_New-scheme_2016.pdf
solo gestori archivio
Note: Articolo
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
803.8 kB
Formato
Adobe PDF
|
803.8 kB | Adobe PDF | Contatta l'autore |
DeSole_preprint_New-scheme_2016.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
494.71 kB
Formato
Adobe PDF
|
494.71 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.