Mosquito-borne diseases represent a deadly threat for millions of people worldwide. The Culex genus, with special reference to Culex quinquefasciatus, comprises the most common vectors of filariasis across urban and semi-urban areas of Asia. In recent years, important efforts have been conducted to propose green-synthesized nanoparticles as a valuable alternative to synthetic insecticides. However, the mosquitocidal potential of carbon nanoparticles has been scarcely investigated. In this study, the larvicidal and pupicidal activity of carbon nanoparticle (CNP) and silver nanoparticle (AgNP) was tested against Cx. quinquefasciatus. UV–Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and Raman analysis confirmed the rapid and cheap synthesis of carbon and silver nanoparticles. In laboratory assays, LC50 (lethal concentration that kills 50 % of the exposed organisms) values ranged from 8.752 ppm (first-instar larvae) to 18.676 ppm (pupae) for silver nanoparticles and from 6.373 ppm (first-instar larvae) to 14.849 ppm (pupae) for carbon nanoparticles. The predation efficiency of the water bug Lethocerus indicus after a single treatment with low doses of silver and carbon nanoparticles was not reduced. Moderate evidence of genotoxic effects induced by exposure to carbon nanoparticles was found on non-target goldfish, Carassius auratus. Lastly, the plant extract used for silver nanosynthesis was tested for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Overall, our results pointed out that AgNP and CNP can be a candidate for effective tools to reduce larval and pupal populations of filariasis vectors, with reduced genotoxicity and impact on behavioral traits of other aquatic organisms sharing the same ecological niche of Cx. quinquefasciatus.

Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms / Murugan, Kadarkarai; Nataraj, Devaraj; Madhiyazhagan, Pari; Sujitha, Vasu; Chandramohan, Balamurugan; Panneerselvam, Chellasamy; Dinesh, Devakumar; Chandirasekar, Ramachandran; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chithravel; Rajaganesh, Rajapandian; Wei, Hui; Syuhei, Ban; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni. - In: PARASITOLOGY RESEARCH. - ISSN 0932-0113. - 115:3(2016), pp. 1071-1083. [10.1007/s00436-015-4837-9]

Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms

NICOLETTI, Marcello;
2016

Abstract

Mosquito-borne diseases represent a deadly threat for millions of people worldwide. The Culex genus, with special reference to Culex quinquefasciatus, comprises the most common vectors of filariasis across urban and semi-urban areas of Asia. In recent years, important efforts have been conducted to propose green-synthesized nanoparticles as a valuable alternative to synthetic insecticides. However, the mosquitocidal potential of carbon nanoparticles has been scarcely investigated. In this study, the larvicidal and pupicidal activity of carbon nanoparticle (CNP) and silver nanoparticle (AgNP) was tested against Cx. quinquefasciatus. UV–Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and Raman analysis confirmed the rapid and cheap synthesis of carbon and silver nanoparticles. In laboratory assays, LC50 (lethal concentration that kills 50 % of the exposed organisms) values ranged from 8.752 ppm (first-instar larvae) to 18.676 ppm (pupae) for silver nanoparticles and from 6.373 ppm (first-instar larvae) to 14.849 ppm (pupae) for carbon nanoparticles. The predation efficiency of the water bug Lethocerus indicus after a single treatment with low doses of silver and carbon nanoparticles was not reduced. Moderate evidence of genotoxic effects induced by exposure to carbon nanoparticles was found on non-target goldfish, Carassius auratus. Lastly, the plant extract used for silver nanosynthesis was tested for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activity. Overall, our results pointed out that AgNP and CNP can be a candidate for effective tools to reduce larval and pupal populations of filariasis vectors, with reduced genotoxicity and impact on behavioral traits of other aquatic organisms sharing the same ecological niche of Cx. quinquefasciatus.
2016
Antioxidant activity; Biological control; Carassius auratus; Lethocerus indicus; Nanotechnology; Predation efficiency; Animals; Benzothiazoles; Biphenyl Compounds; Carbon; DNA Damage; Free Radical Scavengers; Goldfish; Heteroptera; India; Indicators and Reagents; Insecticides; Larva; Lethal Dose 50; Moringa oleifera; Nanoparticles; Picrates; Plant Extracts; Plant Leaves; Predatory Behavior; Pupa; Seeds; Silver; Specific Pathogen-Free Organisms; Sulfonic Acids; Culex; Insect Vectors; Parasitology; Veterinary (all); Insect Science; Infectious Diseases
01 Pubblicazione su rivista::01a Articolo in rivista
Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms / Murugan, Kadarkarai; Nataraj, Devaraj; Madhiyazhagan, Pari; Sujitha, Vasu; Chandramohan, Balamurugan; Panneerselvam, Chellasamy; Dinesh, Devakumar; Chandirasekar, Ramachandran; Kovendan, Kalimuthu; Suresh, Udaiyan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chithravel; Rajaganesh, Rajapandian; Wei, Hui; Syuhei, Ban; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Canale, Angelo; Benelli, Giovanni. - In: PARASITOLOGY RESEARCH. - ISSN 0932-0113. - 115:3(2016), pp. 1071-1083. [10.1007/s00436-015-4837-9]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/967901
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 40
social impact