We describe a privacy-preserving system where a server can classify an ElectroCardioGram (ECG) signal without learning any information about the ECG signal and the client is prevented from gaining knowledge about the classification algorithm used by the server. The system relies on the concept of Linear Branching Programs (LBP) and a recently proposed cryptographic protocol for secure evaluation of private LBPs. We study the trade-off between signal representation accuracy and system complexity both from practical and theoretical perspective. We show how the overall system complexity can be strongly reduced by modifying the original ECG classification algorithm. Two alternatives of the underlying cryptographic protocol are implemented and their corresponding complexities are analyzed to show suitability of our system in real-life applications for current and future security levels.
Combining Signal Processing and Cryptographic Protocol Design for Efficient ECG Classification / 'Barni, M; Failla, P; Koleshnikov, V; Lazzeretti, Riccardo; Sadeghi, A; Schneider, T.. - ELETTRONICO. - (2009), pp. 1-20. (Intervento presentato al convegno International Workshop on Signal Processing in the EncryptEd Domain - colocated with CHES 2009 tenutosi a Lausanne; Switzerland).
Combining Signal Processing and Cryptographic Protocol Design for Efficient ECG Classification
LAZZERETTI, RICCARDO
;
2009
Abstract
We describe a privacy-preserving system where a server can classify an ElectroCardioGram (ECG) signal without learning any information about the ECG signal and the client is prevented from gaining knowledge about the classification algorithm used by the server. The system relies on the concept of Linear Branching Programs (LBP) and a recently proposed cryptographic protocol for secure evaluation of private LBPs. We study the trade-off between signal representation accuracy and system complexity both from practical and theoretical perspective. We show how the overall system complexity can be strongly reduced by modifying the original ECG classification algorithm. Two alternatives of the underlying cryptographic protocol are implemented and their corresponding complexities are analyzed to show suitability of our system in real-life applications for current and future security levels.File | Dimensione | Formato | |
---|---|---|---|
Barni_Combining-Signal-Processing_2009.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.