This study deals with robust optimum design of tuned mass dampers installed on multi-degree-of-freedom systems subjected to stochastic seismic actions, assuming the structural and seismic model parameters to be uncertain. A new global performance index for evaluating the efficiency of protection systems is proposed, as an alternative to commonly used local performance indices such as the maximum interstorey drift. The latter can be considered a good estimator of seismic damage, but it does not measure the whole structural integrity. The direct perturbation method based on first order approximation is adopted to evaluate the effects of uncertainties on the response. The robust design is formulated as a multi-objective optimization problem, in which both the mean and the standard deviation of the performance index are simultaneously minimized. A comparison of the effectiveness and robustness of tuned mass dampers designed using local or global performance indices is carried out, considering different levels of uncertainty.
Robust design of tuned mass dampers installed on multi-degree-of-freedom structures subjected to seismic action / Greco, Rita; Lucchini, Andrea; Marano, Giuseppe Carlo. - In: ENGINEERING OPTIMIZATION. - ISSN 0305-215X. - 47:8(2015), pp. 1009-1030. [10.1080/0305215X.2014.941288]
Robust design of tuned mass dampers installed on multi-degree-of-freedom structures subjected to seismic action
LUCCHINI, Andrea;
2015
Abstract
This study deals with robust optimum design of tuned mass dampers installed on multi-degree-of-freedom systems subjected to stochastic seismic actions, assuming the structural and seismic model parameters to be uncertain. A new global performance index for evaluating the efficiency of protection systems is proposed, as an alternative to commonly used local performance indices such as the maximum interstorey drift. The latter can be considered a good estimator of seismic damage, but it does not measure the whole structural integrity. The direct perturbation method based on first order approximation is adopted to evaluate the effects of uncertainties on the response. The robust design is formulated as a multi-objective optimization problem, in which both the mean and the standard deviation of the performance index are simultaneously minimized. A comparison of the effectiveness and robustness of tuned mass dampers designed using local or global performance indices is carried out, considering different levels of uncertainty.File | Dimensione | Formato | |
---|---|---|---|
Lucchini_Robust_2015.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.