In recent articles, the investigation of atomic bases in cluster algebras associated to affine quivers led the second–named author to introduce a variety called transverse quiver Grassmannian and the first–named and third–named authors to consider the smooth loci of quiver Grassmannians. In this paper, we prove that, for any affine quiver Q, the transverse quiver Grassmannian of an indecomposable representation M is the set of points N in the quiver Grassmannian of M such that Ext1(N,M/N) = 0.As a corollary we prove that the transverse quiver Grassmannian coincides with the smooth locus of the irreducible components of minimal dimension in the quiver Grassmannian.

A homological interpretation of the transverse quiver grassmannians / CERULLI IRELLI, Giovanni; Dupont, Grégoire; Esposito, Francesco. - In: ALGEBRAS AND REPRESENTATION THEORY. - ISSN 1386-923X. - STAMPA. - 16:2(2013), pp. 437-444. [10.1007/s10468-011-9314-2]

A homological interpretation of the transverse quiver grassmannians

CERULLI IRELLI, GIOVANNI;
2013

Abstract

In recent articles, the investigation of atomic bases in cluster algebras associated to affine quivers led the second–named author to introduce a variety called transverse quiver Grassmannian and the first–named and third–named authors to consider the smooth loci of quiver Grassmannians. In this paper, we prove that, for any affine quiver Q, the transverse quiver Grassmannian of an indecomposable representation M is the set of points N in the quiver Grassmannian of M such that Ext1(N,M/N) = 0.As a corollary we prove that the transverse quiver Grassmannian coincides with the smooth locus of the irreducible components of minimal dimension in the quiver Grassmannian.
File allegati a questo prodotto
File Dimensione Formato  
CDE_ART.pdf

solo utenti autorizzati

Note: Articolo
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 527.51 kB
Formato Adobe PDF
527.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/963759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact