Substructure decoupling consists in the identification of a dynamic model of a structural subsystem, starting from an experimental dynamic model (e.g. FRFs) of the assembled system and from a dynamic model of a known portion of it (the so-called residual subsystem). The degrees of freedom (DoFs) of the assembled system are partitioned into internal DoFs (not belonging to the couplings) and coupling DoFs. To achieve decoupling, a negative structure opposite to the residual subsystem is added to the assembled system, and compatibility and equilibrium conditions are enforced at interface DoFs. Interface DoFs can include coupling DoFs only (standard interface), additional internal DoFs of the residual subsystem (extended interface), subsets of coupling DoFs and internal DoFs (mixed interface), or a subset of internal DoFs only (pseudo interface). As shown in previous papers, the use of a mixed interface allows to replace some coupling DoFs (e.g. rotational DoFs) with a subset of internal DoFs. Furthermore, qualitative criteria for an appropriate selection of the internal DoFs used to replace unwanted coupling DoFs are stated. In this paper, a procedure to optimally replace coupling DoFs with internal DoFs is developed, using either the Frequency Response Function (FRF) or the transmissibility between internal and coupling DoFs. The procedure is tested on an assembled structure made by a cantilever column with two staggered short arms (residual substructure) coupled to a horizontal beam (unknown substructure).

Optimal replacement of coupling DoFs in substructure decoupling / D’Ambrogio, Walter; Fregolent, Annalisa. - STAMPA. - 4:8(2016), pp. 77-90. (Intervento presentato al convegno 34th IMAC, A Conference and Exposition on Structural Dynamics, 2016 tenutosi a Orlando; USA nel 2016) [10.1007/978-3-319-29763-7_8].

Optimal replacement of coupling DoFs in substructure decoupling

FREGOLENT, Annalisa
2016

Abstract

Substructure decoupling consists in the identification of a dynamic model of a structural subsystem, starting from an experimental dynamic model (e.g. FRFs) of the assembled system and from a dynamic model of a known portion of it (the so-called residual subsystem). The degrees of freedom (DoFs) of the assembled system are partitioned into internal DoFs (not belonging to the couplings) and coupling DoFs. To achieve decoupling, a negative structure opposite to the residual subsystem is added to the assembled system, and compatibility and equilibrium conditions are enforced at interface DoFs. Interface DoFs can include coupling DoFs only (standard interface), additional internal DoFs of the residual subsystem (extended interface), subsets of coupling DoFs and internal DoFs (mixed interface), or a subset of internal DoFs only (pseudo interface). As shown in previous papers, the use of a mixed interface allows to replace some coupling DoFs (e.g. rotational DoFs) with a subset of internal DoFs. Furthermore, qualitative criteria for an appropriate selection of the internal DoFs used to replace unwanted coupling DoFs are stated. In this paper, a procedure to optimally replace coupling DoFs with internal DoFs is developed, using either the Frequency Response Function (FRF) or the transmissibility between internal and coupling DoFs. The procedure is tested on an assembled structure made by a cantilever column with two staggered short arms (residual substructure) coupled to a horizontal beam (unknown substructure).
2016
34th IMAC, A Conference and Exposition on Structural Dynamics, 2016
optimal DoF selection; substructure decoupling; rotational DoFs; mixed interface; experimental dynamic substructuring
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Optimal replacement of coupling DoFs in substructure decoupling / D’Ambrogio, Walter; Fregolent, Annalisa. - STAMPA. - 4:8(2016), pp. 77-90. (Intervento presentato al convegno 34th IMAC, A Conference and Exposition on Structural Dynamics, 2016 tenutosi a Orlando; USA nel 2016) [10.1007/978-3-319-29763-7_8].
File allegati a questo prodotto
File Dimensione Formato  
D'Ambrogio_postprint_optimal_2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF
D'Ambrogio_optimal_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/963222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact