Numerical modelling of the seismic response of saturated sands should account for the possible accumulation of deformation, the shear modulus degradation and the build-up of excess pore water pressures in order to correctly capture the typically observed experimental behavior, including liquefaction. Unfortunately, appropriate constitutive models are not usually available in the material library of commercial numerical codes, thus requiring an additional effort for their implementation and use. In the present research, a well-known elasto-plastic bounding surface model for sands, named SANISAND, is adopted, once implemented in the commercial finite element model PLAXIS 3D. It is a simple anisotropic sand model originally formulated by Manzari and Dafalias (2004) within the framework of bounding surface plasticity and critical state soil mechanics. The first part of the paper focuses on the validation of the SANISAND model through the simulation of undrained cyclic triaxial tests at the element level, comparing the numerical results to the experimental data available for this class of materials. A new calibration of model parameters is proposed with the aim of capture the cyclic response in the small-to-medium strain range. The constitutive law is then employed to reproduce the seismic wave propagation process in an ideal soil column subjected to seismic event under free-field conditions and to compare with the commonly used equivalent-linear approach in the geotechnical earthquake engineering.
La modellazione numerica della risposta sismica di terreni a grana grossa saturi deve tenere in considerazione del possibile accumulo delle deformazioni, della degradazione del modulo di rigidezza a taglio e dello sviluppo delle sovrappressioni interstiziali, al fine di cogliere in maniera accurata il comportamento tipico osservato sperimentalmente. Nel presente lavoro viene preso in esame un modello costitutivo di tipo bounding surface, originariamente formulato da Manzari e Dafalias (2004) e recentemente implementato dagli scriventi nel codice di calcolo agli elementi finiti PLAXIS 3D. La prima parte del lavoro è orientata alla validazione del modello attraverso la simulazione di prove triassiali cicliche non drenate a controllo di spostamenti, con l’obiettivo di indagare la risposta costitutiva nel campo delle piccole, medie e grandi deformazioni. Il modello è successivamente impiegato per studiare il comportamento del terreno durante un processo di propagazione delle onde sismiche in condizioni di campo libero, confrontandone la risposta con quella ottenuta mediante l’approccio lineare equivalente
Previsione del comportamento ciclico di sabbie alle piccole, medie e grandi deformazioni mediante un modello bounding surface / Amorosi, A.; Rollo, F.; Boldini, D.; di Lernia, A.. - STAMPA. - 2:(2017), pp. 403-411. (Intervento presentato al convegno XXVI Convegno Nazionale di Geotecnica (CNG) tenutosi a Roma nel 20/06/2017-22/06/2017).
Previsione del comportamento ciclico di sabbie alle piccole, medie e grandi deformazioni mediante un modello bounding surface
A. Amorosi;F. Rollo;D. Boldini;
2017
Abstract
Numerical modelling of the seismic response of saturated sands should account for the possible accumulation of deformation, the shear modulus degradation and the build-up of excess pore water pressures in order to correctly capture the typically observed experimental behavior, including liquefaction. Unfortunately, appropriate constitutive models are not usually available in the material library of commercial numerical codes, thus requiring an additional effort for their implementation and use. In the present research, a well-known elasto-plastic bounding surface model for sands, named SANISAND, is adopted, once implemented in the commercial finite element model PLAXIS 3D. It is a simple anisotropic sand model originally formulated by Manzari and Dafalias (2004) within the framework of bounding surface plasticity and critical state soil mechanics. The first part of the paper focuses on the validation of the SANISAND model through the simulation of undrained cyclic triaxial tests at the element level, comparing the numerical results to the experimental data available for this class of materials. A new calibration of model parameters is proposed with the aim of capture the cyclic response in the small-to-medium strain range. The constitutive law is then employed to reproduce the seismic wave propagation process in an ideal soil column subjected to seismic event under free-field conditions and to compare with the commonly used equivalent-linear approach in the geotechnical earthquake engineering.File | Dimensione | Formato | |
---|---|---|---|
Amorosi_Previsione_2017.pdf
solo gestori archivio
Note: Nota CNG - AGI 2017
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
483.96 kB
Formato
Adobe PDF
|
483.96 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.