Abstract BACKGROUND: MODY diabetes includes rare familiar forms due to genetic mutations resulting in β-cell dysfunction. MODY 3 is due to mutations in the gene transcription factor HNF-1α, with diabetes diagnosis in adolescence or early adult life. Few data are available about MODY 3 in pregnancy. CASE REPORT: A 36-year-old Italian woman came to our unit at the 5th week of pregnancy. She was diagnosed with diabetes at 18 years, with negative autoimmunity and a strong familiarity for diabetes. She was treated with gliclazide and metformin. She had a previous pregnancy in which she was treated with insulin, giving birth at 38 weeks to a 3.210 kg baby girl, who showed neonatal hypoglycemia. We switched her to insulin treatment according to guidelines. We asked for genetic molecular testing, resulting in a HNF-1α gene mutation. A US examination at 7 weeks revealed a twin, bicorial, biamniotic pregnancy. At 37 weeks of gestation, she gave birth to two normal-weight baby girls; only one showed neonatal hypoglycemia and a genetic test revealed that she was affected by HNF-1α gene mutation. Subsequently, entire family of the woman was tested, showing that the father, the sister and the first daughter had the same HNF-1α mutation. DISCUSSION: A MODY 3 foetus needs a near-normal maternal glycemic control, because the exposure to intrauterine hyperglycemia can lead to an earlier age of diabetes onset. Neonatal hypoglycemia is generally observed in MODY 1 infants, but it is possible to hypothesize that some HNF-1α mutations could lead to a functionally impaired protein that might dysregulate HNF-4α expression determining hypoglycemia.
A dizygotic twin pregnancy in a MODY 3-affected woman / Bitterman, Olimpia; Iafusco, D; Torcia, Francesco; Tinto, N; Napoli, Angela. - In: ACTA DIABETOLOGICA. - ISSN 0940-5429. - STAMPA. - 53:5(2016), pp. 849-852. [10.1007/s00592-016-0848-y]
A dizygotic twin pregnancy in a MODY 3-affected woman
BITTERMAN, OLIMPIA;TORCIA, Francesco;NAPOLI, Angela
2016
Abstract
Abstract BACKGROUND: MODY diabetes includes rare familiar forms due to genetic mutations resulting in β-cell dysfunction. MODY 3 is due to mutations in the gene transcription factor HNF-1α, with diabetes diagnosis in adolescence or early adult life. Few data are available about MODY 3 in pregnancy. CASE REPORT: A 36-year-old Italian woman came to our unit at the 5th week of pregnancy. She was diagnosed with diabetes at 18 years, with negative autoimmunity and a strong familiarity for diabetes. She was treated with gliclazide and metformin. She had a previous pregnancy in which she was treated with insulin, giving birth at 38 weeks to a 3.210 kg baby girl, who showed neonatal hypoglycemia. We switched her to insulin treatment according to guidelines. We asked for genetic molecular testing, resulting in a HNF-1α gene mutation. A US examination at 7 weeks revealed a twin, bicorial, biamniotic pregnancy. At 37 weeks of gestation, she gave birth to two normal-weight baby girls; only one showed neonatal hypoglycemia and a genetic test revealed that she was affected by HNF-1α gene mutation. Subsequently, entire family of the woman was tested, showing that the father, the sister and the first daughter had the same HNF-1α mutation. DISCUSSION: A MODY 3 foetus needs a near-normal maternal glycemic control, because the exposure to intrauterine hyperglycemia can lead to an earlier age of diabetes onset. Neonatal hypoglycemia is generally observed in MODY 1 infants, but it is possible to hypothesize that some HNF-1α mutations could lead to a functionally impaired protein that might dysregulate HNF-4α expression determining hypoglycemia.File | Dimensione | Formato | |
---|---|---|---|
Bitterman_A-dizygotic-twin_2016.pdf
solo utenti autorizzati
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
690.3 kB
Formato
Adobe PDF
|
690.3 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.