This paper addresses progressive network recovery under uncertain knowledge of damages. We formulate the problem as a mixed integer linear programming (MILP), and show that it is NP-Hard. We propose an iterative stochastic recovery algorithm (ISR) to recover the network in a progressive manner to satisfy the critical services. At each optimization step, we make a decision to repair a part of the network and gather more information iteratively, until critical services are completely restored. Three different algorithms are used to find a feasible set and determine which node to repair, namely, 1) an iterative shortest path algorithm (ISR-SRT), 2) an approximate branch and bound (ISR-BB) and 3) an iterative multi-commodity LP relaxation (ISR-MULT). Further, we have modified the state-of-the-Art iterative split and prune (ISP) algorithm to incorporate the uncertain failures. Our results show that ISR-BB and ISR- MULT outperform the state-of-the-Art 'progressive ISP' algorithm while we can configure our choice of trade-off between the execution time, number of repairs (cost) and the demand loss. We show that our recovery algorithm, on average, can reduce the total number of repairs by a factor of about 3 with respect to ISP, while satisfying all critical demand
Network recovery from massive failures under uncertain knowledge of damages / Toothagaj, D. Z.; Khamfroush, H; Bartolini, Novella; Ciavarella, Stefano; Hayes, S.; La Porta, T.. - STAMPA. - (2017). (Intervento presentato al convegno IFIP TC6 Networking ConferenceJune 12-15, 2017 tenutosi a Stockholm, Sweden nel June 12-15, 2017).
Network recovery from massive failures under uncertain knowledge of damages
BARTOLINI, NOVELLA;CIAVARELLA, STEFANO;
2017
Abstract
This paper addresses progressive network recovery under uncertain knowledge of damages. We formulate the problem as a mixed integer linear programming (MILP), and show that it is NP-Hard. We propose an iterative stochastic recovery algorithm (ISR) to recover the network in a progressive manner to satisfy the critical services. At each optimization step, we make a decision to repair a part of the network and gather more information iteratively, until critical services are completely restored. Three different algorithms are used to find a feasible set and determine which node to repair, namely, 1) an iterative shortest path algorithm (ISR-SRT), 2) an approximate branch and bound (ISR-BB) and 3) an iterative multi-commodity LP relaxation (ISR-MULT). Further, we have modified the state-of-the-Art iterative split and prune (ISP) algorithm to incorporate the uncertain failures. Our results show that ISR-BB and ISR- MULT outperform the state-of-the-Art 'progressive ISP' algorithm while we can configure our choice of trade-off between the execution time, number of repairs (cost) and the demand loss. We show that our recovery algorithm, on average, can reduce the total number of repairs by a factor of about 3 with respect to ISP, while satisfying all critical demandFile | Dimensione | Formato | |
---|---|---|---|
Bartolini_Network_2017.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
356.93 kB
Formato
Adobe PDF
|
356.93 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.