We show that minimizers of the Heitmann-Radin energy [6] are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence). The proof relies on the discrete differential geometry techniques introduced in [3].

Classification of Particle Numbers with Unique Heitmann–Radin Minimizer / DE LUCA, Lucia; Friesecke, GERO HELMUTH. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - ELETTRONICO. - (2017), pp. ?-?. [10.1007/s10955-017-1781-3]

Classification of Particle Numbers with Unique Heitmann–Radin Minimizer

DE LUCA, LUCIA;FRIESECKE, GERO HELMUTH
2017

Abstract

We show that minimizers of the Heitmann-Radin energy [6] are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence). The proof relies on the discrete differential geometry techniques introduced in [3].
2017
Crystallization; discrete differential geometry; energy minimization; Heitmann–Radin potential; Wulff shape; statistical and nonlinear physics; mathematical physics
01 Pubblicazione su rivista::01a Articolo in rivista
Classification of Particle Numbers with Unique Heitmann–Radin Minimizer / DE LUCA, Lucia; Friesecke, GERO HELMUTH. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - ELETTRONICO. - (2017), pp. ?-?. [10.1007/s10955-017-1781-3]
File allegati a questo prodotto
File Dimensione Formato  
Deluca_Classification-of-particle-numbers_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 352.38 kB
Formato Adobe PDF
352.38 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/960660
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact