We present a new information-theoretic result which we call the Chaining Lemma. It considers a so-called “chain” of random variables, defined by a source distribution X(0)with high min-entropy and a number (say, t in total) of arbitrary functions (T1,…, Tt) which are applied in succession to that source to generate the chain (Formula presented). Intuitively, the Chaining Lemma guarantees that, if the chain is not too long, then either (i) the entire chain is “highly random”, in that every variable has high min-entropy; or (ii) it is possible to find a point j (1 ≤ j ≤ t) in the chain such that, conditioned on the end of the chain i.e. (Formula presented), the preceding part (Formula presented) remains highly random. We think this is an interesting information-theoretic result which is intuitive but nevertheless requires rigorous case-analysis to prove. We believe that the above lemma will find applications in cryptography. We give an example of this, namely we show an application of the lemma to protect essentially any cryptographic scheme against memory tampering attacks. We allow several tampering requests, the tampering functions can be arbitrary, however, they must be chosen from a bounded size set of functions that is fixed a priori
The chaining lemma and its application / Damgård, Ivan; Faust, Sebastian; Mukherjee, Pratyay; Venturi, Daniele. - 9063:(2015), pp. 181-196. (Intervento presentato al convegno 8th International Conference on Information Theoretic Security, ICITS 2015 tenutosi a Lugano nel 2015) [10.1007/978-3-319-17470-9_11].
The chaining lemma and its application
VENTURI, DANIELE
2015
Abstract
We present a new information-theoretic result which we call the Chaining Lemma. It considers a so-called “chain” of random variables, defined by a source distribution X(0)with high min-entropy and a number (say, t in total) of arbitrary functions (T1,…, Tt) which are applied in succession to that source to generate the chain (Formula presented). Intuitively, the Chaining Lemma guarantees that, if the chain is not too long, then either (i) the entire chain is “highly random”, in that every variable has high min-entropy; or (ii) it is possible to find a point j (1 ≤ j ≤ t) in the chain such that, conditioned on the end of the chain i.e. (Formula presented), the preceding part (Formula presented) remains highly random. We think this is an interesting information-theoretic result which is intuitive but nevertheless requires rigorous case-analysis to prove. We believe that the above lemma will find applications in cryptography. We give an example of this, namely we show an application of the lemma to protect essentially any cryptographic scheme against memory tampering attacks. We allow several tampering requests, the tampering functions can be arbitrary, however, they must be chosen from a bounded size set of functions that is fixed a prioriFile | Dimensione | Formato | |
---|---|---|---|
Venturi_chaining_2015.pdf
accesso aperto
Note: Full version
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
440.6 kB
Formato
Adobe PDF
|
440.6 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.