The evaluation of material deprivation, quality of life and well-being very often requires to deal with multidimensional systems of ordinal variables, rather than with classical numerical datasets. This poses new statistical and methodological challenges, since classical evaluation tools are not designed to deal with this kind of data. The mainstream evaluation methodologies generally follow a counting approach, as in a recent proposal by Alkire and Foster pertaining to the evaluation of multidimensional poverty. Counting procedures are inspired by the composite indicator approach and share similar drawbacks with it, computing aggregated indicators that may be poorly reliable. A recent and alternative proposal is to address the ordinal evaluation problem through partial order theory which provides tools that prove more consistent with the discrete nature of the data. The goal of the present paper is thus to introduce the two proposals, showing how the evaluation methodology based on partial order theory can be integrated in the counting approach of Alkire and Foster.
Socio-economic evaluation with ordinal variables: integrating counting and POSET approaches / M., Fattore; Maggino, Filomena; F., Greselin. - In: STATISTICA & APPLICAZIONI. - ISSN 1824-6672. - ELETTRONICO. - Special Issue. Partial Orders in Applied Sciences:(2011), pp. 31-42.
Socio-economic evaluation with ordinal variables: integrating counting and POSET approaches
MAGGINO, FILOMENA;
2011
Abstract
The evaluation of material deprivation, quality of life and well-being very often requires to deal with multidimensional systems of ordinal variables, rather than with classical numerical datasets. This poses new statistical and methodological challenges, since classical evaluation tools are not designed to deal with this kind of data. The mainstream evaluation methodologies generally follow a counting approach, as in a recent proposal by Alkire and Foster pertaining to the evaluation of multidimensional poverty. Counting procedures are inspired by the composite indicator approach and share similar drawbacks with it, computing aggregated indicators that may be poorly reliable. A recent and alternative proposal is to address the ordinal evaluation problem through partial order theory which provides tools that prove more consistent with the discrete nature of the data. The goal of the present paper is thus to introduce the two proposals, showing how the evaluation methodology based on partial order theory can be integrated in the counting approach of Alkire and Foster.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.