The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f ) of the diffusive process x(t ) in such a potential. We show that for most of realizations of x(t ) in a given realization of the potential, the low-frequency behavior is S(f ) ∼ A/f 2, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t ).
Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model / Dean, David S.; Iorio, Antonio; Marinari, Vincenzo; Oshanin, Gleb. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - STAMPA. - 94:3(2016), p. 032131. [10.1103/PhysRevE.94.032131]
Sample-to-sample fluctuations of power spectrum of a random motion in a periodic Sinai model
MARINARI, Vincenzo;
2016
Abstract
The Sinai model of a tracer diffusing in a quenched Brownian potential is a much-studied problem exhibiting a logarithmically slow anomalous diffusion due to the growth of energy barriers with the system size. However, if the potential is random but periodic, the regime of anomalous diffusion crosses over to one of normal diffusion once a tracer has diffused over a few periods of the system. Here we consider a system in which the potential is given by a Brownian bridge on a finite interval (0,L) and then periodically repeated over the whole real line and study the power spectrum S(f ) of the diffusive process x(t ) in such a potential. We show that for most of realizations of x(t ) in a given realization of the potential, the low-frequency behavior is S(f ) ∼ A/f 2, i.e., the same as for standard Brownian motion, and the amplitude A is a disorder-dependent random variable with a finite support. Focusing on the statistical properties of this random variable, we determine the moments of A of arbitrary, negative, or positive order k and demonstrate that they exhibit a multifractal dependence on k and a rather unusual dependence on the temperature and on the periodicity L, which are supported by atypical realizations of the periodic disorder. We finally show that the distribution of A has a log-normal left tail and exhibits an essential singularity close to the right edge of the support, which is related to the Lifshitz singularity. Our findings are based both on analytic results and on extensive numerical simulations of the process x(t ).File | Dimensione | Formato | |
---|---|---|---|
Dean_Sample-to-sample_2016.pdf
solo gestori archivio
Note: articolo completo
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
278.11 kB
Formato
Adobe PDF
|
278.11 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.