We show that supercocycles on super L-infinity algebras capture, at the rational level, the twisted cohomological charge structure of the fields of M-theory and of type IIA string theory. We show that rational 4-sphere-valued supercocycles for M-branes in M-theory descend to supercocycles in type IIA string theory with coefficients in the free loop space of the 4-sphere, to yield the Ramond-Ramond fields in the rational image of twisted K-theory, with the twist given by the B-field. In particular, we derive the M2/M5 - F1/Dp/NS5 correspondence via dimensional reduction of sphere-valued super-L-infinity-cocycles.
Rational sphere valued supercocycles in M-theory and type IIA string theory / Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 114:(2017), pp. 91-108. [10.1016/j.geomphys.2016.11.024]
Rational sphere valued supercocycles in M-theory and type IIA string theory
FIORENZA, DOMENICO;
2017
Abstract
We show that supercocycles on super L-infinity algebras capture, at the rational level, the twisted cohomological charge structure of the fields of M-theory and of type IIA string theory. We show that rational 4-sphere-valued supercocycles for M-branes in M-theory descend to supercocycles in type IIA string theory with coefficients in the free loop space of the 4-sphere, to yield the Ramond-Ramond fields in the rational image of twisted K-theory, with the twist given by the B-field. In particular, we derive the M2/M5 - F1/Dp/NS5 correspondence via dimensional reduction of sphere-valued super-L-infinity-cocycles.File | Dimensione | Formato | |
---|---|---|---|
Fiorenza_postprint_Rational-sphere_2017.pdf
accesso aperto
Note: Articolo principale
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
287.45 kB
Formato
Adobe PDF
|
287.45 kB | Adobe PDF | |
Fiorenza_RationalSphere_Journal_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
523.25 kB
Formato
Adobe PDF
|
523.25 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.