We prove comparison principles for quasilinear elliptic equations whose simplest model is λu − Du + H(x, Du) = 0 , where Du = div (|Du|p−2Du) is the p-Laplace operator with p > 2, λ ≥ 0, H(x,ξ) : × RN → R is a Carathéodory function and ⊂ RN is a bounded domain, N ≥ 2. We collect several comparison results for weak sub- and super-solutions under different setting of assumptions and with possibly different methods. A strong comparison result is also proved for more regular solutions.

Comparison principles for p-Laplace equations with lower order terms / Leonori, Tommaso; Porretta, Alessio; Riey, Giuseppe. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - (2016), pp. 1-27. [10.1007/s10231-016-0600-9]

Comparison principles for p-Laplace equations with lower order terms

LEONORI, TOMMASO;PORRETTA, Alessio;RIEY, GIUSEPPE
2016

Abstract

We prove comparison principles for quasilinear elliptic equations whose simplest model is λu − Du + H(x, Du) = 0 , where Du = div (|Du|p−2Du) is the p-Laplace operator with p > 2, λ ≥ 0, H(x,ξ) : × RN → R is a Carathéodory function and ⊂ RN is a bounded domain, N ≥ 2. We collect several comparison results for weak sub- and super-solutions under different setting of assumptions and with possibly different methods. A strong comparison result is also proved for more regular solutions.
File allegati a questo prodotto
File Dimensione Formato  
Leonori2017_Article_ComParisonPrinciPlesForP-LaPla.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 613.31 kB
Formato Adobe PDF
613.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11573/956225
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact