Hyperspectral imaging (HSI) is an emerging technique that combines the imaging properties of a digital camera with the spectroscopic properties of a spectrometer able to detect the spectral attributes of each pixel in an image. For these characteristics, HSI allows to qualitatively and quantitatively evaluate the effects of the interactions of light with organic and/or inorganic materials. The results of this interaction are usually displayed as a spectral signature characterized by a sequence of energy values, in a pre-defined wavelength interval, for each of the investigated/collected wavelength. Following this approach, it is thus possible to collect, in a fast and reliable way, spectral information that are strictly linked to chemical-physical characteristics of the investigated materials and/or products. Considering that in an hyperspectral image the spectrum of each pixel can be analyzed, HSI can be considered as one of the best nondestructive technology allowing to perform the most accurate and detailed information extraction. HSI can be applied in different wavelength fields, the most common are the visible (VIS: 400-700 nm), the near infrared (NIR: 1000-1700 nm) and the short wave infrared (SWIR: 1000-2500 nm). It can be applied for inspections from micro-to macro-scale, up to remote sensing. HSI produces a large amount of information due to the great number of continuous collected spectral bands. Such an approach, when successful, is quite challenging being usually reliable, robust and characterized by lower costs, if compared with those usually associated to commonly applied analytical off-line and/or on-line analytical approaches. More and more applications have been thus developed and tested, in these last years, especially in food inspection, with a large range of investigated products, such as fruits and vegetables, meat, fish, eggs and cereals, but also in medicine and pharmaceutical sector, in cultural heritage, in material characterization and in waste recycling. Examples of some application, based on HSI, originally developed by the authors, are presented, critically analyzed and discussed, with reference to the different hardware configuration and logics utilized to perform the analysis, according to the characterization, inspection and quality control actions to apply.

Hyperspectral imaging and its applications / Serranti, Silvia; Bonifazi, Giuseppe. - STAMPA. - 9899:(2016). (Intervento presentato al convegno Optical Sensing and Detection IV tenutosi a Brussels, Belgium nel 3 - 7 April 2016) [10.1117/12.2234976].

Hyperspectral imaging and its applications

SERRANTI, Silvia;BONIFAZI, Giuseppe
2016

Abstract

Hyperspectral imaging (HSI) is an emerging technique that combines the imaging properties of a digital camera with the spectroscopic properties of a spectrometer able to detect the spectral attributes of each pixel in an image. For these characteristics, HSI allows to qualitatively and quantitatively evaluate the effects of the interactions of light with organic and/or inorganic materials. The results of this interaction are usually displayed as a spectral signature characterized by a sequence of energy values, in a pre-defined wavelength interval, for each of the investigated/collected wavelength. Following this approach, it is thus possible to collect, in a fast and reliable way, spectral information that are strictly linked to chemical-physical characteristics of the investigated materials and/or products. Considering that in an hyperspectral image the spectrum of each pixel can be analyzed, HSI can be considered as one of the best nondestructive technology allowing to perform the most accurate and detailed information extraction. HSI can be applied in different wavelength fields, the most common are the visible (VIS: 400-700 nm), the near infrared (NIR: 1000-1700 nm) and the short wave infrared (SWIR: 1000-2500 nm). It can be applied for inspections from micro-to macro-scale, up to remote sensing. HSI produces a large amount of information due to the great number of continuous collected spectral bands. Such an approach, when successful, is quite challenging being usually reliable, robust and characterized by lower costs, if compared with those usually associated to commonly applied analytical off-line and/or on-line analytical approaches. More and more applications have been thus developed and tested, in these last years, especially in food inspection, with a large range of investigated products, such as fruits and vegetables, meat, fish, eggs and cereals, but also in medicine and pharmaceutical sector, in cultural heritage, in material characterization and in waste recycling. Examples of some application, based on HSI, originally developed by the authors, are presented, critically analyzed and discussed, with reference to the different hardware configuration and logics utilized to perform the analysis, according to the characterization, inspection and quality control actions to apply.
2016
Optical Sensing and Detection IV
hyperspectral imaging; materials characterization; process and quality control; spectroscopic analysis
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Hyperspectral imaging and its applications / Serranti, Silvia; Bonifazi, Giuseppe. - STAMPA. - 9899:(2016). (Intervento presentato al convegno Optical Sensing and Detection IV tenutosi a Brussels, Belgium nel 3 - 7 April 2016) [10.1117/12.2234976].
File allegati a questo prodotto
File Dimensione Formato  
Serranti_Hyperspectral-imaging-applications_2016.pdf

solo utenti autorizzati

Note: published paper
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/954811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact