Our goal is to knhow a ‘‘hidden regularity’’ result for integro-differential equations, when the integral term is of convolution type. Under general assumptions on the integral kernel we are able to define the trace of the normal derivative of a weak solution. In such a way we extend to integro-differential equations well-known results available in the literature for wave equations without memory.

Hidden regularity for wave equations with memory / Loreti, Paola; Sforza, Daniela. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - STAMPA. - 7:2(2016), pp. 391-405.

Hidden regularity for wave equations with memory

LORETI, Paola;SFORZA, Daniela
2016

Abstract

Our goal is to knhow a ‘‘hidden regularity’’ result for integro-differential equations, when the integral term is of convolution type. Under general assumptions on the integral kernel we are able to define the trace of the normal derivative of a weak solution. In such a way we extend to integro-differential equations well-known results available in the literature for wave equations without memory.
Hidden regularity; Integro-differential equations; Mathematics (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Hidden regularity for wave equations with memory / Loreti, Paola; Sforza, Daniela. - In: RIVISTA DI MATEMATICA DELLA UNIVERSITÀ DI PARMA. - ISSN 0035-6298. - STAMPA. - 7:2(2016), pp. 391-405.
File allegati a questo prodotto
File Dimensione Formato  
Loreti_Wave-equations.pdf

solo gestori archivio

Note: Articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 116.37 kB
Formato Adobe PDF
116.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/954549
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact