In this short note, we build upon recent results from [7] to present a precise expression for the asymptotic variance of the Euler-Poincar´e characteristic for the excursion sets of Gaussian eigenfunctions on S 2 ; this result can be written as a second-order Gaussian kinematic formula for the excursion sets of random spherical harmonics. The covariance between the Euler-Poincar´e characteristics for different level sets is shown to be fully degenerate; it is also proved that the variance for the zero level excursion sets is asymptotically of smaller order

Fluctuations of the Euler-Poincare` Characteristic for Random Spherical Harmonics / Cammarota, Valentina; Marinucci, Domenico; Wigman, I.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 144:11(2016), pp. 4759-4775. [10.1090/proc/13299]

Fluctuations of the Euler-Poincare` Characteristic for Random Spherical Harmonics

CAMMAROTA, VALENTINA;MARINUCCI, Domenico;
2016

Abstract

In this short note, we build upon recent results from [7] to present a precise expression for the asymptotic variance of the Euler-Poincar´e characteristic for the excursion sets of Gaussian eigenfunctions on S 2 ; this result can be written as a second-order Gaussian kinematic formula for the excursion sets of random spherical harmonics. The covariance between the Euler-Poincar´e characteristics for different level sets is shown to be fully degenerate; it is also proved that the variance for the zero level excursion sets is asymptotically of smaller order
2016
mathematics (all); applied mathematics; Gaussian eigenfunctions on S
01 Pubblicazione su rivista::01a Articolo in rivista
Fluctuations of the Euler-Poincare` Characteristic for Random Spherical Harmonics / Cammarota, Valentina; Marinucci, Domenico; Wigman, I.. - In: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9939. - STAMPA. - 144:11(2016), pp. 4759-4775. [10.1090/proc/13299]
File allegati a questo prodotto
File Dimensione Formato  
Cammarota_fluctuactions_2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 709.17 kB
Formato Adobe PDF
709.17 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/954126
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact