We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ Rn into finitely many subsets of finite perimeter and ε> 0 , we prove that u is ε-close to a small deformation of a polyhedral decomposition vε, in the sense that there is a C1 diffeomorphism fε: Rn→ Rn which is ε-close to the identity and such that u∘ fε- vε is ε-small in the strong BV norm. This implies that the energy of u is close to that of vε for a large class of energies defined on partitions. © 2017, Springer-Verlag Berlin Heidelberg.

Density of polyhedral partitions / Braides, Andrea; Conti, Sergio; Garroni, Adriana. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 56:2(2017). [10.1007/s00526-017-1108-x]

Density of polyhedral partitions

GARRONI, Adriana
2017

Abstract

We prove the density of polyhedral partitions in the set of finite Caccioppoli partitions. Precisely, given a decomposition u of a bounded Lipschitz set Ω ⊂ Rn into finitely many subsets of finite perimeter and ε> 0 , we prove that u is ε-close to a small deformation of a polyhedral decomposition vε, in the sense that there is a C1 diffeomorphism fε: Rn→ Rn which is ε-close to the identity and such that u∘ fε- vε is ε-small in the strong BV norm. This implies that the energy of u is close to that of vε for a large class of energies defined on partitions. © 2017, Springer-Verlag Berlin Heidelberg.
2017
49J45; 49Q15; 49Q20; analysis; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Density of polyhedral partitions / Braides, Andrea; Conti, Sergio; Garroni, Adriana. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - STAMPA. - 56:2(2017). [10.1007/s00526-017-1108-x]
File allegati a questo prodotto
File Dimensione Formato  
Braides_Density-of-polyhedral_2017.pdf

solo gestori archivio

Note: Articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 499.82 kB
Formato Adobe PDF
499.82 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/953988
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact