Let k≤b be positive integers. A family C of sequences of length t over an alphabet of size b is called k-separated if for any k distinct members of C, there is a coordinate in which they mutually differ. Let N(t,b,k) denote the maximum size of such a family. This function has been studied extensively, mainly in the context of perfect hashing. Here we slightly improve a recent bound of Dyachkov, showing that for all t<k≤b, N(t,b,k)≤tb-(k-1)(t-1). This implies that if k≤b and t is divisible by k-1, then N(t,b,k)≤(k-1)bt/(k-1)-(k-1)2. © 2001 Elsevier Science B.V.

Recursive bounds for perfect hashing / Fachini, Emanuela; Alon, Nilli. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - STAMPA. - 111:3(2001), pp. 307-311. [10.1016/s0166-218x(00)00291-2]

Recursive bounds for perfect hashing

FACHINI, Emanuela;
2001

Abstract

Let k≤b be positive integers. A family C of sequences of length t over an alphabet of size b is called k-separated if for any k distinct members of C, there is a coordinate in which they mutually differ. Let N(t,b,k) denote the maximum size of such a family. This function has been studied extensively, mainly in the context of perfect hashing. Here we slightly improve a recent bound of Dyachkov, showing that for all t<k≤b, N(t,b,k)≤tb-(k-1)(t-1). This implies that if k≤b and t is divisible by k-1, then N(t,b,k)≤(k-1)bt/(k-1)-(k-1)2. © 2001 Elsevier Science B.V.
2001
01 Pubblicazione su rivista::01a Articolo in rivista
Recursive bounds for perfect hashing / Fachini, Emanuela; Alon, Nilli. - In: DISCRETE APPLIED MATHEMATICS. - ISSN 0166-218X. - STAMPA. - 111:3(2001), pp. 307-311. [10.1016/s0166-218x(00)00291-2]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/95358
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact