First-principles calculations based on density-functional theory including anharmonicity within the variational stochastic self-consistent harmonic approximation are applied to understand how the quantum character of the proton affects the candidate metallic molecular Cmca - 4 structure of hydrogen in the 400-450 GPa pressure range, where metallization of hydrogen is expected to occur. Anharmonic effects, which become crucial due to the zero-point motion, have a large impact on the hydrogen molecules by increasing the intramolecular distance by approximately a 6%. This induces two new electron pockets at the Fermi surface opening new scattering channels for the electron-phonon interaction. Consequently, the electron-phonon coupling constant and the superconducting critical temperature are approximately doubled by anharmonicity and Cmca - 4 hydrogen becomes a superconductor above 200 K in all the studied pressure range. Contrary to many superconducting hydrides, where anharmoncity tends to lower the superconducting critical temperature, our results show that it can enhance superconductivity in molecular hydrogen.

Anharmonic enhancement of superconductivity in metallic molecular Cmca-4 hydrogen at high pressure: a first-principles study / Borinaga, Miguel; Riego, P.; Leonardo, A.; Calandra, Matteo; Mauri, Francesco; Bergara, Aitor; Errea, Ion. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 28:49(2016). [10.1088/0953-8984/28/49/494001]

Anharmonic enhancement of superconductivity in metallic molecular Cmca-4 hydrogen at high pressure: a first-principles study

MAURI, FRANCESCO;
2016

Abstract

First-principles calculations based on density-functional theory including anharmonicity within the variational stochastic self-consistent harmonic approximation are applied to understand how the quantum character of the proton affects the candidate metallic molecular Cmca - 4 structure of hydrogen in the 400-450 GPa pressure range, where metallization of hydrogen is expected to occur. Anharmonic effects, which become crucial due to the zero-point motion, have a large impact on the hydrogen molecules by increasing the intramolecular distance by approximately a 6%. This induces two new electron pockets at the Fermi surface opening new scattering channels for the electron-phonon interaction. Consequently, the electron-phonon coupling constant and the superconducting critical temperature are approximately doubled by anharmonicity and Cmca - 4 hydrogen becomes a superconductor above 200 K in all the studied pressure range. Contrary to many superconducting hydrides, where anharmoncity tends to lower the superconducting critical temperature, our results show that it can enhance superconductivity in molecular hydrogen.
2016
molecular hydrogen; superconductivity; anharmonicity; SOLID HYDROGEN; DENSE HYDROGEN; PHASE; GPA; SYSTEM
01 Pubblicazione su rivista::01a Articolo in rivista
Anharmonic enhancement of superconductivity in metallic molecular Cmca-4 hydrogen at high pressure: a first-principles study / Borinaga, Miguel; Riego, P.; Leonardo, A.; Calandra, Matteo; Mauri, Francesco; Bergara, Aitor; Errea, Ion. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - 28:49(2016). [10.1088/0953-8984/28/49/494001]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/953420
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact